aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/QuickReference.dox
blob: a4be0f68a126e9e422cfb8c6acfce833adae47a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
namespace Eigen {

/** \eigenManualPage QuickRefPage Quick reference guide

\eigenAutoToc

<hr>

<a href="#" class="top">top</a>
\section QuickRef_Headers Modules and Header files

The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once.

<table class="manual">
<tr><th>Module</th><th>Header file</th><th>Contents</th></tr>
<tr><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr>
<tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr>
<tr><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr>
<tr><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr>
<tr class="alt"><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr>
<tr><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decomposition with least-squares solver (JacobiSVD)</td></tr>
<tr class="alt"><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr>
<tr><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr>
<tr class="alt"><td>\link Sparse_modules Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, DynamicSparseMatrix, SparseVector)</td></tr>
<tr><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr>
<tr class="alt"><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr>
</table>

<a href="#" class="top">top</a>
\section QuickRef_Types Array, matrix and vector types


\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array:
\code
typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType;
typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType;
\endcode

\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.).
\li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic.
\li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options)

All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid:
\code
Matrix<double, 6, Dynamic>                  // Dynamic number of columns (heap allocation)
Matrix<double, Dynamic, 2>                  // Dynamic number of rows (heap allocation)
Matrix<double, Dynamic, Dynamic, RowMajor>  // Fully dynamic, row major (heap allocation)
Matrix<double, 13, 3>                       // Fully fixed (usually allocated on stack)
\endcode

In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples:
<table class="example">
<tr><th>Matrices</th><th>Arrays</th></tr>
<tr><td>\code
Matrix<float,Dynamic,Dynamic>   <=>   MatrixXf
Matrix<double,Dynamic,1>        <=>   VectorXd
Matrix<int,1,Dynamic>           <=>   RowVectorXi
Matrix<float,3,3>               <=>   Matrix3f
Matrix<float,4,1>               <=>   Vector4f
\endcode</td><td>\code
Array<float,Dynamic,Dynamic>    <=>   ArrayXXf
Array<double,Dynamic,1>         <=>   ArrayXd
Array<int,1,Dynamic>            <=>   RowArrayXi
Array<float,3,3>                <=>   Array33f
Array<float,4,1>                <=>   Array4f
\endcode</td></tr>
</table>

Conversion between the matrix and array worlds:
\code
Array44f a1, a1;
Matrix4f m1, m2;
m1 = a1 * a2;                     // coeffwise product, implicit conversion from array to matrix.
a1 = m1 * m2;                     // matrix product, implicit conversion from matrix to array.
a2 = a1 + m1.array();             // mixing array and matrix is forbidden
m2 = a1.matrix() + m1;            // and explicit conversion is required.
ArrayWrapper<Matrix4f> m1a(m1);   // m1a is an alias for m1.array(), they share the same coefficients
MatrixWrapper<Array44f> a1m(a1);
\endcode

In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object:
\li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only
\li <a name="arrayonly"></a>\arrayworld array objects only

\subsection QuickRef_Basics Basic matrix manipulation

<table class="manual">
<tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr>
<tr><td>Constructors</td>
<td>\code
Vector4d  v4;
Vector2f  v1(x, y);
Array3i   v2(x, y, z);
Vector4d  v3(x, y, z, w);

VectorXf  v5; // empty object
ArrayXf   v6(size);
\endcode</td><td>\code
Matrix4f  m1;




MatrixXf  m5; // empty object
MatrixXf  m6(nb_rows, nb_columns);
\endcode</td><td class="note">
By default, the coefficients \n are left uninitialized</td></tr>
<tr class="alt"><td>Comma initializer</td>
<td>\code
Vector3f  v1;     v1 << x, y, z;
ArrayXf   v2(4);  v2 << 1, 2, 3, 4;

\endcode</td><td>\code
Matrix3f  m1;   m1 << 1, 2, 3,
                      4, 5, 6,
                      7, 8, 9;
\endcode</td><td></td></tr>

<tr><td>Comma initializer (bis)</td>
<td colspan="2">
\include Tutorial_commainit_02.cpp
</td>
<td>
output:
\verbinclude Tutorial_commainit_02.out
</td>
</tr>

<tr class="alt"><td>Runtime info</td>
<td>\code
vector.size();

vector.innerStride();
vector.data();
\endcode</td><td>\code
matrix.rows();          matrix.cols();
matrix.innerSize();     matrix.outerSize();
matrix.innerStride();   matrix.outerStride();
matrix.data();
\endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr>
<tr><td>Compile-time info</td>
<td colspan="2">\code
ObjectType::Scalar              ObjectType::RowsAtCompileTime
ObjectType::RealScalar          ObjectType::ColsAtCompileTime
ObjectType::Index               ObjectType::SizeAtCompileTime
\endcode</td><td></td></tr>
<tr class="alt"><td>Resizing</td>
<td>\code
vector.resize(size);


vector.resizeLike(other_vector);
vector.conservativeResize(size);
\endcode</td><td>\code
matrix.resize(nb_rows, nb_cols);
matrix.resize(Eigen::NoChange, nb_cols);
matrix.resize(nb_rows, Eigen::NoChange);
matrix.resizeLike(other_matrix);
matrix.conservativeResize(nb_rows, nb_cols);
\endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr>

<tr><td>Coeff access with \n range checking</td>
<td>\code
vector(i)     vector.x()
vector[i]     vector.y()
              vector.z()
              vector.w()
\endcode</td><td>\code
matrix(i,j)
\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr>

<tr class="alt"><td>Coeff access without \n range checking</td>
<td>\code
vector.coeff(i)
vector.coeffRef(i)
\endcode</td><td>\code
matrix.coeff(i,j)
matrix.coeffRef(i,j)
\endcode</td><td></td></tr>

<tr><td>Assignment/copy</td>
<td colspan="2">\code
object = expression;
object_of_float = expression_of_double.cast<float>();
\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr>

</table>

\subsection QuickRef_PredefMat Predefined Matrices

<table class="manual">
<tr>
  <th>Fixed-size matrix or vector</th>
  <th>Dynamic-size matrix</th>
  <th>Dynamic-size vector</th>
</tr>
<tr style="border-bottom-style: none;">
  <td>
\code
typedef {Matrix3f|Array33f} FixedXD;
FixedXD x;

x = FixedXD::Zero();
x = FixedXD::Ones();
x = FixedXD::Constant(value);
x = FixedXD::Random();
x = FixedXD::LinSpaced(size, low, high);

x.setZero();
x.setOnes();
x.setConstant(value);
x.setRandom();
x.setLinSpaced(size, low, high);
\endcode
  </td>
  <td>
\code
typedef {MatrixXf|ArrayXXf} Dynamic2D;
Dynamic2D x;

x = Dynamic2D::Zero(rows, cols);
x = Dynamic2D::Ones(rows, cols);
x = Dynamic2D::Constant(rows, cols, value);
x = Dynamic2D::Random(rows, cols);
N/A

x.setZero(rows, cols);
x.setOnes(rows, cols);
x.setConstant(rows, cols, value);
x.setRandom(rows, cols);
N/A
\endcode
  </td>
  <td>
\code
typedef {VectorXf|ArrayXf} Dynamic1D;
Dynamic1D x;

x = Dynamic1D::Zero(size);
x = Dynamic1D::Ones(size);
x = Dynamic1D::Constant(size, value);
x = Dynamic1D::Random(size);
x = Dynamic1D::LinSpaced(size, low, high);

x.setZero(size);
x.setOnes(size);
x.setConstant(size, value);
x.setRandom(size);
x.setLinSpaced(size, low, high);
\endcode
  </td>
</tr>

<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr>
<tr style="border-bottom-style: none;">
  <td>
\code
x = FixedXD::Identity();
x.setIdentity();

Vector3f::UnitX() // 1 0 0
Vector3f::UnitY() // 0 1 0
Vector3f::UnitZ() // 0 0 1
\endcode
  </td>
  <td>
\code
x = Dynamic2D::Identity(rows, cols);
x.setIdentity(rows, cols);



N/A
\endcode
  </td>
  <td>\code
N/A


VectorXf::Unit(size,i)
VectorXf::Unit(4,1) == Vector4f(0,1,0,0)
                    == Vector4f::UnitY()
\endcode
  </td>
</tr>
</table>



\subsection QuickRef_Map Mapping external arrays

<table class="manual">
<tr>
<td>Contiguous \n memory</td>
<td>\code
float data[] = {1,2,3,4};
Map<Vector3f> v1(data);       // uses v1 as a Vector3f object
Map<ArrayXf>  v2(data,3);     // uses v2 as a ArrayXf object
Map<Array22f> m1(data);       // uses m1 as a Array22f object
Map<MatrixXf> m2(data,2,2);   // uses m2 as a MatrixXf object
\endcode</td>
</tr>
<tr>
<td>Typical usage \n of strides</td>
<td>\code
float data[] = {1,2,3,4,5,6,7,8,9};
Map<VectorXf,0,InnerStride<2> >  v1(data,3);                      // = [1,3,5]
Map<VectorXf,0,InnerStride<> >   v2(data,3,InnerStride<>(3));     // = [1,4,7]
Map<MatrixXf,0,OuterStride<3> >  m2(data,2,3);                    // both lines     |1,4,7|
Map<MatrixXf,0,OuterStride<> >   m1(data,2,3,OuterStride<>(3));   // are equal to:  |2,5,8|
\endcode</td>
</tr>
</table>


<a href="#" class="top">top</a>
\section QuickRef_ArithmeticOperators Arithmetic Operators

<table class="manual">
<tr><td>
add \n subtract</td><td>\code
mat3 = mat1 + mat2;           mat3 += mat1;
mat3 = mat1 - mat2;           mat3 -= mat1;\endcode
</td></tr>
<tr class="alt"><td>
scalar product</td><td>\code
mat3 = mat1 * s1;             mat3 *= s1;           mat3 = s1 * mat1;
mat3 = mat1 / s1;             mat3 /= s1;\endcode
</td></tr>
<tr><td>
matrix/vector \n products \matrixworld</td><td>\code
col2 = mat1 * col1;
row2 = row1 * mat1;           row1 *= mat1;
mat3 = mat1 * mat2;           mat3 *= mat1; \endcode
</td></tr>
<tr class="alt"><td>
transposition \n adjoint \matrixworld</td><td>\code
mat1 = mat2.transpose();      mat1.transposeInPlace();
mat1 = mat2.adjoint();        mat1.adjointInPlace();
\endcode
</td></tr>
<tr><td>
\link MatrixBase::dot() dot \endlink product \n inner product \matrixworld</td><td>\code
scalar = vec1.dot(vec2);
scalar = col1.adjoint() * col2;
scalar = (col1.adjoint() * col2).value();\endcode
</td></tr>
<tr class="alt"><td>
outer product \matrixworld</td><td>\code
mat = col1 * col2.transpose();\endcode
</td></tr>

<tr><td>
\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code
scalar = vec1.norm();         scalar = vec1.squaredNorm()
vec2 = vec1.normalized();     vec1.normalize(); // inplace \endcode
</td></tr>

<tr class="alt"><td>
\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code
#include <Eigen/Geometry>
vec3 = vec1.cross(vec2);\endcode</td></tr>
</table>

<a href="#" class="top">top</a>
\section QuickRef_Coeffwise Coefficient-wise \& Array operators
Coefficient-wise operators for matrices and vectors:
<table class="manual">
<tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr>
<tr><td>\code
mat1.cwiseMin(mat2)
mat1.cwiseMax(mat2)
mat1.cwiseAbs2()
mat1.cwiseAbs()
mat1.cwiseSqrt()
mat1.cwiseProduct(mat2)
mat1.cwiseQuotient(mat2)\endcode
</td><td>\code
mat1.array().min(mat2.array())
mat1.array().max(mat2.array())
mat1.array().abs2()
mat1.array().abs()
mat1.array().sqrt()
mat1.array() * mat2.array()
mat1.array() / mat2.array()
\endcode</td></tr>
</table>

It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with std::ptr_fun:
\code mat1.unaryExpr(std::ptr_fun(foo))\endcode

Array operators:\arrayworld

<table class="manual">
<tr><td>Arithmetic operators</td><td>\code
array1 * array2     array1 / array2     array1 *= array2    array1 /= array2
array1 + scalar     array1 - scalar     array1 += scalar    array1 -= scalar
\endcode</td></tr>
<tr><td>Comparisons</td><td>\code
array1 < array2     array1 > array2     array1 < scalar     array1 > scalar
array1 <= array2    array1 >= array2    array1 <= scalar    array1 >= scalar
array1 == array2    array1 != array2    array1 == scalar    array1 != scalar
\endcode</td></tr>
<tr><td>Trigo, power, and \n misc functions \n and the STL variants</td><td>\code
array1.min(array2)            
array1.max(array2)            
array1.abs2()
array1.abs()                  abs(array1)
array1.sqrt()                 sqrt(array1)
array1.log()                  log(array1)
array1.exp()                  exp(array1)
array1.pow(exponent)          pow(array1,exponent)
array1.square()
array1.cube()
array1.inverse()
array1.sin()                  sin(array1)
array1.cos()                  cos(array1)
array1.tan()                  tan(array1)
array1.asin()                 asin(array1)
array1.acos()                 acos(array1)
\endcode
</td></tr>
</table>

<a href="#" class="top">top</a>
\section QuickRef_Reductions Reductions

Eigen provides several reduction methods such as:
\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink,
\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink,
\link MatrixBase::trace() trace() \endlink \matrixworld,
\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld,
\link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink.
All reduction operations can be done matrix-wise,
\link DenseBase::colwise() column-wise \endlink or
\link DenseBase::rowwise() row-wise \endlink. Usage example:
<table class="manual">
<tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code
      5 3 1
mat = 2 7 8
      9 4 6 \endcode
</td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr>
<tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr>
<tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code
1
2
4
\endcode</td></tr>
</table>

Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink:
\code
int i, j;
s = vector.minCoeff(&i);        // s == vector[i]
s = matrix.maxCoeff(&i, &j);    // s == matrix(i,j)
\endcode
Typical use cases of all() and any():
\code
if((array1 > 0).all()) ...      // if all coefficients of array1 are greater than 0 ...
if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ...
\endcode


<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices

Read-write access to a \link DenseBase::col(Index) column \endlink
or a \link DenseBase::row(Index) row \endlink of a matrix (or array):
\code
mat1.row(i) = mat2.col(j);
mat1.col(j1).swap(mat1.col(j2));
\endcode

Read-write access to sub-vectors:
<table class="manual">
<tr>
<th>Default versions</th>
<th>Optimized versions when the size \n is known at compile time</th></tr>
<th></th>

<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr>
<tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr>
<tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td>
    <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr>
<tr class="alt"><td colspan="3">

Read-write access to sub-matrices:</td></tr>
<tr>
  <td>\code mat1.block(i,j,rows,cols)\endcode
      \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td>
  <td>\code mat1.block<rows,cols>(i,j)\endcode
      \link DenseBase::block(Index,Index) (more) \endlink</td>
  <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr>
<tr><td>\code
 mat1.topLeftCorner(rows,cols)
 mat1.topRightCorner(rows,cols)
 mat1.bottomLeftCorner(rows,cols)
 mat1.bottomRightCorner(rows,cols)\endcode
 <td>\code
 mat1.topLeftCorner<rows,cols>()
 mat1.topRightCorner<rows,cols>()
 mat1.bottomLeftCorner<rows,cols>()
 mat1.bottomRightCorner<rows,cols>()\endcode
 <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr>
 <tr><td>\code
 mat1.topRows(rows)
 mat1.bottomRows(rows)
 mat1.leftCols(cols)
 mat1.rightCols(cols)\endcode
 <td>\code
 mat1.topRows<rows>()
 mat1.bottomRows<rows>()
 mat1.leftCols<cols>()
 mat1.rightCols<cols>()\endcode
 <td>specialized versions of block() \n when the block fit two corners</td></tr>
</table>



<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations

\subsection QuickRef_Reverse Reverse
Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()).
\code
vec.reverse()           mat.colwise().reverse()   mat.rowwise().reverse()
vec.reverseInPlace()
\endcode

\subsection QuickRef_Replicate Replicate
Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate())
\code
vec.replicate(times)                                          vec.replicate<Times>
mat.replicate(vertical_times, horizontal_times)               mat.replicate<VerticalTimes, HorizontalTimes>()
mat.colwise().replicate(vertical_times, horizontal_times)     mat.colwise().replicate<VerticalTimes, HorizontalTimes>()
mat.rowwise().replicate(vertical_times, horizontal_times)     mat.rowwise().replicate<VerticalTimes, HorizontalTimes>()
\endcode


<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices
(matrix world \matrixworld)

\subsection QuickRef_Diagonal Diagonal matrices

<table class="example">
<tr><th>Operation</th><th>Code</th></tr>
<tr><td>
view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code
mat1 = vec1.asDiagonal();\endcode
</td></tr>
<tr><td>
Declare a diagonal matrix</td><td>\code
DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
diag1.diagonal() = vector;\endcode
</td></tr>
<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td>
 <td>\code
vec1 = mat1.diagonal();        mat1.diagonal() = vec1;      // main diagonal
vec1 = mat1.diagonal(+n);      mat1.diagonal(+n) = vec1;    // n-th super diagonal
vec1 = mat1.diagonal(-n);      mat1.diagonal(-n) = vec1;    // n-th sub diagonal
vec1 = mat1.diagonal<1>();     mat1.diagonal<1>() = vec1;   // first super diagonal
vec1 = mat1.diagonal<-2>();    mat1.diagonal<-2>() = vec1;  // second sub diagonal
\endcode</td>
</tr>

<tr><td>Optimized products and inverse</td>
 <td>\code
mat3  = scalar * diag1 * mat1;
mat3 += scalar * mat1 * vec1.asDiagonal();
mat3 = vec1.asDiagonal().inverse() * mat1
mat3 = mat1 * diag1.inverse()
\endcode</td>
</tr>

</table>

\subsection QuickRef_TriangularView Triangular views

TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information.

\note The .triangularView() template member function requires the \c template keyword if it is used on an
object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.

<table class="example">
<tr><th>Operation</th><th>Code</th></tr>
<tr><td>
Reference to a triangular with optional \n
unit or null diagonal (read/write):
</td><td>\code
m.triangularView<Xxx>()
\endcode \n
\c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower
</td></tr>
<tr><td>
Writing to a specific triangular part:\n (only the referenced triangular part is evaluated)
</td><td>\code
m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode
</td></tr>
<tr><td>
Conversion to a dense matrix setting the opposite triangular part to zero:
</td><td>\code
m2 = m1.triangularView<Eigen::UnitUpper>()\endcode
</td></tr>
<tr><td>
Products:
</td><td>\code
m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2
m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode
</td></tr>
<tr><td>
Solving linear equations:\n
\f$ M_2 := L_1^{-1} M_2 \f$ \n
\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n
\f$ M_4 := M_4 U_1^{-1} \f$
</td><td>\n \code
L1.triangularView<Eigen::UnitLower>().solveInPlace(M2)
L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3)
U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode
</td></tr>
</table>

\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views

Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint
matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be
used to store other information.

\note The .selfadjointView() template member function requires the \c template keyword if it is used on an
object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details.

<table class="example">
<tr><th>Operation</th><th>Code</th></tr>
<tr><td>
Conversion to a dense matrix:
</td><td>\code
m2 = m.selfadjointView<Eigen::Lower>();\endcode
</td></tr>
<tr><td>
Product with another general matrix or vector:
</td><td>\code
m3  = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3;
m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode
</td></tr>
<tr><td>
Rank 1 and rank K update: \n
\f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n
\f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$
</td><td>\n \code
M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1);
M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode
</td></tr>
<tr><td>
Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$)
</td><td>\code
M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s);
\endcode
</td></tr>
<tr><td>
Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$)
</td><td>\code
// via a standard Cholesky factorization
m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2);
// via a Cholesky factorization with pivoting
m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2);
\endcode
</td></tr>
</table>

*/

/*
<table class="tutorial_code">
<tr><td>
\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code
mat1 = vec1.asDiagonal();\endcode
</td></tr>
<tr><td>
Declare a diagonal matrix</td><td>\code
DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size);
diag1.diagonal() = vector;\endcode
</td></tr>
<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td>
 <td>\code
vec1 = mat1.diagonal();            mat1.diagonal() = vec1;      // main diagonal
vec1 = mat1.diagonal(+n);          mat1.diagonal(+n) = vec1;    // n-th super diagonal
vec1 = mat1.diagonal(-n);          mat1.diagonal(-n) = vec1;    // n-th sub diagonal
vec1 = mat1.diagonal<1>();         mat1.diagonal<1>() = vec1;   // first super diagonal
vec1 = mat1.diagonal<-2>();        mat1.diagonal<-2>() = vec1;  // second sub diagonal
\endcode</td>
</tr>

<tr><td>View on a triangular part of a matrix (read/write)</td>
 <td>\code
mat2 = mat1.triangularView<Xxx>();
// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower
mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced
\endcode</td></tr>

<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td>
 <td>\code
mat2 = mat1.selfadjointView<Xxx>();     // Xxx = Upper or Lower
mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint();  // evaluated and write to the upper triangular part only
\endcode</td></tr>

</table>

Optimized products:
\code
mat3 += scalar * vec1.asDiagonal() * mat1
mat3 += scalar * mat1 * vec1.asDiagonal()
mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2
mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>()
mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2
mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>()
mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2);
mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar);
\endcode

Inverse products: (all are optimized)
\code
mat3 = vec1.asDiagonal().inverse() * mat1
mat3 = mat1 * diag1.inverse()
mat1.triangularView<Xxx>().solveInPlace(mat2)
mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2)
mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2)
\endcode

*/
}