1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
// A simple quickref for Eigen. Add anything that's missing.
// Main author: Keir Mierle
#include <Eigen/Core>
#include <Eigen/Array>
Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
Matrix3f P, Q, R; // 3x3 float matrix.
Vector3f x, y, z; // 3x1 float matrix.
RowVector3f a, b, c; // 1x3 float matrix.
double s;
// Basic usage
// Eigen // Matlab // comments
x.size() // length(x) // vector size
C.rows() // size(C)(1) // number of rows
C.cols() // size(C)(2) // number of columns
x(i) // x(i+1) // Matlab is 1-based
C(i,j) // C(i+1,j+1) //
A.resize(4, 4); // Runtime error if assertions are on.
B.resize(4, 9); // Runtime error if assertions are on.
A.resize(3, 3); // Ok; size didn't change.
B.resize(3, 9); // Ok; only dynamic cols changed.
A << 1, 2, 3, // Initialize A. The elements can also be
4, 5, 6, // matrices, which are stacked along cols
7, 8, 9; // and then the rows are stacked.
B << A, A, A; // B is three horizontally stacked A's.
A.fill(10); // Fill A with all 10's.
A.setRandom(); // Fill A with uniform random numbers in (-1, 1).
// Requires #include <Eigen/Array>.
A.setIdentity(); // Fill A with the identity.
// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen // Matlab
x.start(n) // x(1:n)
x.start<n>() // x(1:n)
x.end(n) // N = rows(x); x(N - n: N)
x.end<n>() // N = rows(x); x(N - n: N)
x.segment(i, n) // x(i+1 : i+n)
x.segment<n>(i) // x(i+1 : i+n)
P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
P.corner(TopLeft, rows, cols) // P(1:rows, 1:cols)
P.corner(TopRight, rows, cols) // [m n]=size(P); P(1:rows, n-cols+1:n)
P.corner(BottomLeft, rows, cols) // [m n]=size(P); P(m-rows+1:m, 1:cols)
P.corner(BottomRight, rows, cols) // [m n]=size(P); P(m-rows+1:m, n-cols+1:n)
P.corner<rows,cols>(TopLeft) // P(1:rows, 1:cols)
P.corner<rows,cols>(TopRight) // [m n]=size(P); P(1:rows, n-cols+1:n)
P.corner<rows,cols>(BottomLeft) // [m n]=size(P); P(m-rows+1:m, 1:cols)
P.corner<rows,cols>(BottomRight) // [m n]=size(P); P(m-rows+1:m, n-cols+1:n)
P.minor(i, j) // Something nasty.
// Of particular note is Eigen's swap function which is highly optimized.
// Eigen // Matlab
R.row(i) = P.col(j); // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
// Views, transpose, etc; all read-write except for .adjoint().
// Eigen // Matlab
R.adjoint() // R'
R.transpose() // R.' or conj(R')
R.diagonal() // diag(R)
x.asDiagonal() // diag(x)
// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector. Matrix-matrix. Matrix-scalar.
y = M*x; R = P*Q; R = P*s;
a = b*M; R = P - Q; R = s*P;
a *= M; R = P + Q; R = P/s;
R *= Q; R = s*P;
R += Q; R *= s;
R -= Q; R /= s;
// Vectorized operations on each element independently
// (most require #include <Eigen/Array>)
// Eigen // Matlab
R = P.cwise() * Q; // R = P .* Q
R = P.cwise() / Q; // R = P ./ Q
R = P.cwise() + s; // R = P + s
R = P.cwise() - s; // R = P - s
R.cwise() += s; // R = R + s
R.cwise() -= s; // R = R - s
R.cwise() *= s; // R = R * s
R.cwise() /= s; // R = R / s
R.cwise() < Q; // R < Q
R.cwise() <= Q; // R <= Q
R.cwise().inverse(); // 1 ./ P
R.cwise().sin() // sin(P)
R.cwise().cos() // cos(P)
R.cwise().pow(s) // P .^ s
R.cwise().square() // P .^ 2
R.cwise().cube() // P .^ 3
R.cwise().sqrt() // sqrt(P)
R.cwise().exp() // exp(P)
R.cwise().log() // log(P)
R.cwise().max(P) // max(R, P)
R.cwise().min(P) // min(R, P)
R.cwise().abs() // abs(P)
R.cwise().abs2() // abs(P.^2)
(R.cwise() < s).select(P,Q); // (R < s ? P : Q)
// Reductions.
int r, c;
// Eigen // Matlab
R.minCoeff() // min(R(:))
R.maxCoeff() // max(R(:))
s = R.minCoeff(&r, &c) // [aa, bb] = min(R); [cc, dd] = min(aa);
// r = bb(dd); c = dd; s = cc
s = R.maxCoeff(&r, &c) // [aa, bb] = max(R); [cc, dd] = max(aa);
// row = bb(dd); col = dd; s = cc
R.sum() // sum(R(:))
R.colwise.sum() // sum(R)
R.rowwise.sum() // sum(R, 2) or sum(R')'
R.prod() // prod(R(:))
R.colwise.prod() // prod(R)
R.rowwise.prod() // prod(R, 2) or prod(R')'
R.trace() // trace(R)
R.all() // all(R(:))
R.colwise().all() // all(R)
R.rowwise().all() // all(R, 2)
R.any() // any(R(:))
R.colwise().any() // any(R)
R.rowwise().any() // any(R, 2)
// Dot products, norms, etc.
// Eigen // Matlab
x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
x.dot(y) // dot(x, y)
x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
// Eigen can map existing memory into Eigen matrices.
float array[3];
Map<Vector3f>(array, 3).fill(10);
int data[4] = 1, 2, 3, 4;
Matrix2i mat2x2(data);
MatrixXi mat2x2 = Map<Matrix2i>(data);
MatrixXi mat2x2 = Map<MatrixXi>(data, 2, 2);
// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
bool solved;
solved = A.ldlt().solve(b, &x)); // A sym. p.s.d. #include <Eigen/Cholesky>
solved = A.llt() .solve(b, &x)); // A sym. p.d. #include <Eigen/Cholesky>
solved = A.lu() .solve(b, &x)); // Stable and fast. #include <Eigen/LU>
solved = A.qr() .solve(b, &x)); // No pivoting. #include <Eigen/QR>
solved = A.svd() .solve(b, &x)); // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt() -> .matrixL()
// .lu() -> .matrixL() and .matrixU()
// .qr() -> .matrixQ() and .matrixR()
// .svd() -> .matrixU(), .singularValues(), and .matrixV()
// Eigenvalue problems
// Eigen // Matlab
A.eigenvalues(); // eig(A);
EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
eig.eigenvalues(); // diag(val)
eig.eigenvectors(); // vec
|