blob: 874b812db32d979a26ae26bb6b60002feba6cb91 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
#include<Eigen/Core>
using namespace Eigen;
/** From Golub & van Loan Algorithm 5.1.1 page 210
*/
template<typename InputVector, typename OutputVector>
void ei_compute_householder(const InputVector& x, OutputVector *v, typename OutputVector::RealScalar *beta)
{
EIGEN_STATIC_ASSERT(ei_is_same_type<typename InputVector::Scalar, typename OutputVector::Scalar>::ret,
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
EIGEN_STATIC_ASSERT((InputVector::SizeAtCompileTime == OutputVector::SizeAtCompileTime+1)
|| InputVector::SizeAtCompileTime == Dynamic
|| OutputVector::SizeAtCompileTime == Dynamic,
YOU_MIXED_VECTORS_OF_DIFFERENT_SIZES)
typedef typename OutputVector::RealScalar RealScalar;
ei_assert(x.size() == v->size()+1);
int n = x.size();
RealScalar sigma = x.end(n-1).squaredNorm();
*v = x.end(n-1);
// the big assumption in this code is that ei_abs2(x->coeff(0)) is not much smaller than sigma.
if(ei_isMuchSmallerThan(sigma, ei_abs2(x.coeff(0))))
{
// in this case x is approx colinear to (1,0,....,0)
// fixme, implement this trivial case
}
else
{
RealScalar mu = ei_sqrt(ei_abs2(x.coeff(0)) + sigma);
RealScalar kappa = -sigma/(x.coeff(0)+mu);
*beta =
}
}
|