1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_EULERANGLES_H
#define EIGEN_EULERANGLES_H
template<typename Other,
int OtherRows=Other::RowsAtCompileTime,
int OtherCols=Other::ColsAtCompileTime>
struct ei_eulerangles_assign_impl;
// enum {
// XYZ,
// XYX,
//
//
// };
/** \class EulerAngles
*
* \brief Represents a rotation in a 3 dimensional space as three Euler angles
*
* \param _Scalar the scalar type, i.e., the type of the angles.
*
* \sa class Quaternion, class AngleAxis, class Transform
*/
template<typename _Scalar>
class EulerAngles
{
public:
enum { Dim = 3 };
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
typedef AngleAxis<Scalar> AngleAxisType;
protected:
Vector3 m_angles;
public:
EulerAngles() {}
inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {}
inline EulerAngles(const QuaternionType& q) { *this = q; }
inline EulerAngles(const AngleAxisType& aa) { *this = aa; }
template<typename Derived>
inline EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
Scalar angle(int i) const { return m_angles.coeff(i); }
Scalar& angle(int i) { return m_angles.coeffRef(i); }
const Vector3& coeffs() const { return m_angles; }
Vector3& coeffs() { return m_angles; }
EulerAngles& operator=(const QuaternionType& q);
EulerAngles& operator=(const AngleAxisType& ea);
template<typename Derived>
EulerAngles& operator=(const MatrixBase<Derived>& m);
template<typename Derived>
EulerAngles& fromRotationMatrix(const MatrixBase<Derived>& m);
Matrix3 toRotationMatrix(void) const;
};
/** Set \c *this from a quaternion.
* The axis is normalized.
*/
template<typename Scalar>
EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const QuaternionType& q)
{
Scalar y2 = q.y() * q.y();
m_angles.coeffRef(0) = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
m_angles.coeffRef(1) = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
m_angles.coeffRef(2) = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
return *this;
}
/** Set \c *this from Euler angles \a ea.
*/
template<typename Scalar>
EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const AngleAxisType& aa)
{
return *this = QuaternionType(aa);
}
/** Set \c *this from the expression \a xpr:
* - if \a xpr is a 3x1 vector, then \a xpr is assumed to be a vector of angles
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
* and \a xpr is converted to Euler angles
*/
template<typename Scalar>
template<typename Derived>
EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const MatrixBase<Derived>& other)
{
ei_eulerangles_assign_impl<Derived>::run(*this,other.derived());
return *this;
}
/** Constructs and \returns an equivalent 3x3 rotation matrix.
*/
template<typename Scalar>
typename EulerAngles<Scalar>::Matrix3
EulerAngles<Scalar>::toRotationMatrix(void) const
{
Vector3 c = m_angles.cwise().cos();
Vector3 s = m_angles.cwise().sin();
return Matrix3() <<
c.y()*c.z(), -c.y()*s.z(), s.y(),
c.z()*s.x()*s.y()+c.x()*s.z(), c.x()*c.z()-s.x()*s.y()*s.z(), -c.y()*s.x(),
-c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(), c.x()*c.y();
}
// set from a rotation matrix
template<typename Other>
struct ei_eulerangles_assign_impl<Other,3,3>
{
typedef typename Other::Scalar Scalar;
inline static void run(EulerAngles<Scalar>& ea, const Other& mat)
{
// mat = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
ea.angle(1) = std::asin(mat.coeff(0,2));
ea.angle(0) = std::atan2(-mat.coeff(1,2),mat.coeff(2,2));
ea.angle(2) = std::atan2(-mat.coeff(0,1),mat.coeff(0,0));
}
};
// set from a vector of angles
template<typename Other>
struct ei_eulerangles_assign_impl<Other,3,1>
{
typedef typename Other::Scalar Scalar;
inline static void run(EulerAngles<Scalar>& ea, const Other& vec)
{
ea.coeffs() = vec;
}
};
#endif // EIGEN_EULERANGLES_H
|