aboutsummaryrefslogtreecommitdiffhomepage
path: root/demos/opengl/quaternion_demo.cpp
blob: dd323a4c9673910ce711a306a58a55ec4e633ea0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "quaternion_demo.h"
#include "icosphere.h"

#include <Eigen/Geometry>
#include <Eigen/QR>
#include <Eigen/LU>

#include <iostream>
#include <QEvent>
#include <QMouseEvent>
#include <QInputDialog>
#include <QGridLayout>
#include <QButtonGroup>
#include <QRadioButton>
#include <QDockWidget>
#include <QPushButton>
#include <QGroupBox>

using namespace Eigen;

class FancySpheres
{
  public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    
    FancySpheres()
    {
      const int levels = 4;
      const float scale = 0.33;
      float radius = 100;
      std::vector<int> parents;

      // leval 0
      mCenters.push_back(Vector3f::Zero());
      parents.push_back(-1);
      mRadii.push_back(radius);

      // generate level 1 using icosphere vertices
      radius *= 0.45;
      {
        float dist = mRadii[0]*0.9;
        for (int i=0; i<12; ++i)
        {
          mCenters.push_back(mIcoSphere.vertices()[i] * dist);
          mRadii.push_back(radius);
          parents.push_back(0);
        }
      }

      static const float angles [10] = {
        0, 0,
        M_PI, 0.*M_PI,
        M_PI, 0.5*M_PI,
        M_PI, 1.*M_PI,
        M_PI, 1.5*M_PI
      };

      // generate other levels
      int start = 1;
      for (int l=1; l<levels; l++)
      {
        radius *= scale;
        int end = mCenters.size();
        for (int i=start; i<end; ++i)
        {
          Vector3f c = mCenters[i];
          Vector3f ax0 = (c - mCenters[parents[i]]).normalized();
          Vector3f ax1 = ax0.unitOrthogonal();
          Quaternionf q;
          q.setFromTwoVectors(Vector3f::UnitZ(), ax0);
          Affine3f t = Translation3f(c) * q * Scaling(mRadii[i]+radius);
          for (int j=0; j<5; ++j)
          {
            Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0)
                                * AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0)
                                * (mRadii[i] + radius*0.8);
            mCenters.push_back(newC);
            mRadii.push_back(radius);
            parents.push_back(i);
          }
        }
        start = end;
      }
    }

    void draw()
    {
      int end = mCenters.size();
      glEnable(GL_NORMALIZE);
      for (int i=0; i<end; ++i)
      {
        Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]);
        gpu.pushMatrix(GL_MODELVIEW);
        gpu.multMatrix(t.matrix(),GL_MODELVIEW);
        mIcoSphere.draw(2);
        gpu.popMatrix(GL_MODELVIEW);
      }
      glDisable(GL_NORMALIZE);
    }
  protected:
    std::vector<Vector3f> mCenters;
    std::vector<float> mRadii;
    IcoSphere mIcoSphere;
};


// generic linear interpolation method
template<typename T> T lerp(float t, const T& a, const T& b)
{
  return a*(1-t) + b*t;
}

// quaternion slerp
template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b)
{ return a.slerp(t,b); }

// linear interpolation of a frame using the type OrientationType
// to perform the interpolation of the orientations
template<typename OrientationType>
inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b)
{
  return Frame(lerp(alpha,a.position,b.position),
               Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation))));
}

template<typename _Scalar> class EulerAngles
{
public:
  enum { Dim = 3 };
  typedef _Scalar Scalar;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> QuaternionType;

protected:

  Vector3 m_angles;

public:

  EulerAngles() {}
  inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {}
  inline EulerAngles(const QuaternionType& q) { *this = q; }

  const Vector3& coeffs() const { return m_angles; }
  Vector3& coeffs() { return m_angles; }

  EulerAngles& operator=(const QuaternionType& q)
  {
    Matrix3 m = q.toRotationMatrix();
    return *this = m;
  }

  EulerAngles& operator=(const Matrix3& m)
  {
    // mat =  cy*cz          -cy*sz           sy
    //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
    //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
    m_angles.coeffRef(1) = std::asin(m.coeff(0,2));
    m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2));
    m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0));
    return *this;
  }

  Matrix3 toRotationMatrix(void) const
  {
    Vector3 c = m_angles.array().cos();
    Vector3 s = m_angles.array().sin();
    Matrix3 res;
    res <<  c.y()*c.z(),                    -c.y()*s.z(),                   s.y(),
            c.z()*s.x()*s.y()+c.x()*s.z(),  c.x()*c.z()-s.x()*s.y()*s.z(),  -c.y()*s.x(),
            -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(),  c.x()*c.y();
    return res;
  }

  operator QuaternionType() { return QuaternionType(toRotationMatrix()); }
};

// Euler angles slerp
template<> EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b)
{
  EulerAngles<float> res;
  res.coeffs() = lerp(t, a.coeffs(), b.coeffs());
  return res;
}


RenderingWidget::RenderingWidget()
{
  mAnimate = false;
  mCurrentTrackingMode = TM_NO_TRACK;
  mNavMode = NavTurnAround;
  mLerpMode = LerpQuaternion;
  mRotationMode = RotationStable;
  mTrackball.setCamera(&mCamera);

  // required to capture key press events
  setFocusPolicy(Qt::ClickFocus);
}

void RenderingWidget::grabFrame(void)
{
    // ask user for a time
    bool ok = false;
    double t = 0;
    if (!m_timeline.empty())
      t = (--m_timeline.end())->first + 1.;
    t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ",
      t, 0, 1e3, 1, &ok);
    if (ok)
    {
      Frame aux;
      aux.orientation = mCamera.viewMatrix().linear();
      aux.position = mCamera.viewMatrix().translation();
      m_timeline[t] = aux;
    }
}

void RenderingWidget::drawScene()
{
  static FancySpheres sFancySpheres;
  float length = 50;
  gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1));
  gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1));
  gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1));

  // draw the fractal object
  float sqrt3 = std::sqrt(3.);
  glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5,0.5,0.5,1).data());
  glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5,1,0.5,1).data());
  glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1,1,1,1).data());
  glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3,-sqrt3,sqrt3,0).data());

  glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0,0,0,1).data());
  glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1,0.5,0.5,1).data());
  glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1,1,1,1).data());
  glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3,sqrt3,-sqrt3,0).data());

  glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data());
  glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data());
  glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data());
  glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64);

  glEnable(GL_LIGHTING);
  glEnable(GL_LIGHT0);
  glEnable(GL_LIGHT1);

  sFancySpheres.draw();
  glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data());
  glNormalPointer(GL_FLOAT, 0, mNormals[0].data());
  glEnableClientState(GL_VERTEX_ARRAY);
  glEnableClientState(GL_NORMAL_ARRAY);
  glDrawArrays(GL_TRIANGLES, 0, mVertices.size());
  glDisableClientState(GL_VERTEX_ARRAY);
  glDisableClientState(GL_NORMAL_ARRAY);

  glDisable(GL_LIGHTING);
}

void RenderingWidget::animate()
{
  m_alpha += double(m_timer.interval()) * 1e-3;

  TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha);
  TimeLine::const_iterator lo = hi;
  --lo;

  Frame currentFrame;

  if(hi==m_timeline.end())
  {
    // end
    currentFrame = lo->second;
    stopAnimation();
  }
  else if(hi==m_timeline.begin())
  {
    // start
    currentFrame = hi->second;
  }
  else
  {
    float s = (m_alpha - lo->first)/(hi->first - lo->first);
    if (mLerpMode==LerpEulerAngles)
      currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second);
    else if (mLerpMode==LerpQuaternion)
      currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second);
    else
    {
      std::cerr << "Invalid rotation interpolation mode (abort)\n";
      exit(2);
    }
    currentFrame.orientation.coeffs().normalize();
  }

  currentFrame.orientation = currentFrame.orientation.inverse();
  currentFrame.position = - (currentFrame.orientation * currentFrame.position);
  mCamera.setFrame(currentFrame);

  updateGL();
}

void RenderingWidget::keyPressEvent(QKeyEvent * e)
{
    switch(e->key())
    {
      case Qt::Key_Up:
        mCamera.zoom(2);
        break;
      case Qt::Key_Down:
        mCamera.zoom(-2);
        break;
      // add a frame
      case Qt::Key_G:
        grabFrame();
        break;
      // clear the time line
      case Qt::Key_C:
        m_timeline.clear();
        break;
      // move the camera to initial pos
      case Qt::Key_R:
        resetCamera();
        break;
      // start/stop the animation
      case Qt::Key_A:
        if (mAnimate)
        {
          stopAnimation();
        }
        else
        {
          m_alpha = 0;
          connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
          m_timer.start(1000/30);
          mAnimate = true;
        }
        break;
      default:
        break;
    }

    updateGL();
}

void RenderingWidget::stopAnimation()
{
  disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
  m_timer.stop();
  mAnimate = false;
  m_alpha = 0;
}

void RenderingWidget::mousePressEvent(QMouseEvent* e)
{
  mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
  bool fly = (mNavMode==NavFly) || (e->modifiers()&Qt::ControlModifier);
  switch(e->button())
  {
    case Qt::LeftButton:
      if(fly)
      {
        mCurrentTrackingMode = TM_LOCAL_ROTATE;
        mTrackball.start(Trackball::Local);
      }
      else
      {
        mCurrentTrackingMode = TM_ROTATE_AROUND;
        mTrackball.start(Trackball::Around);
      }
      mTrackball.track(mMouseCoords);
      break;
    case Qt::MidButton:
      if(fly)
        mCurrentTrackingMode = TM_FLY_Z;
      else
        mCurrentTrackingMode = TM_ZOOM;
      break;
    case Qt::RightButton:
        mCurrentTrackingMode = TM_FLY_PAN;
      break;
    default:
      break;
  }
}
void RenderingWidget::mouseReleaseEvent(QMouseEvent*)
{
    mCurrentTrackingMode = TM_NO_TRACK;
    updateGL();
}

void RenderingWidget::mouseMoveEvent(QMouseEvent* e)
{
    // tracking
    if(mCurrentTrackingMode != TM_NO_TRACK)
    {
        float dx =   float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth());
        float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight());

        // speedup the transformations
        if(e->modifiers() & Qt::ShiftModifier)
        {
          dx *= 10.;
          dy *= 10.;
        }

        switch(mCurrentTrackingMode)
        {
          case TM_ROTATE_AROUND:
          case TM_LOCAL_ROTATE:
            if (mRotationMode==RotationStable)
            {
              // use the stable trackball implementation mapping
              // the 2D coordinates to 3D points on a sphere.
              mTrackball.track(Vector2i(e->pos().x(), e->pos().y()));
            }
            else
            {
              // standard approach mapping the x and y displacements as rotations
              // around the camera's X and Y axes.
              Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY())
                            * AngleAxisf(-dy*M_PI, Vector3f::UnitX());
              if (mCurrentTrackingMode==TM_LOCAL_ROTATE)
                mCamera.localRotate(q);
              else
                mCamera.rotateAroundTarget(q);
            }
            break;
          case TM_ZOOM :
            mCamera.zoom(dy*100);
            break;
          case TM_FLY_Z :
            mCamera.localTranslate(Vector3f(0, 0, -dy*200));
            break;
          case TM_FLY_PAN :
            mCamera.localTranslate(Vector3f(dx*200, dy*200, 0));
            break;
          default:
            break;
        }

        updateGL();
    }

    mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
}

void RenderingWidget::paintGL()
{
  glEnable(GL_DEPTH_TEST);
  glDisable(GL_CULL_FACE);
  glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
  glDisable(GL_COLOR_MATERIAL);
  glDisable(GL_BLEND);
  glDisable(GL_ALPHA_TEST);
  glDisable(GL_TEXTURE_1D);
  glDisable(GL_TEXTURE_2D);
  glDisable(GL_TEXTURE_3D);

  // Clear buffers
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

  mCamera.activateGL();

  drawScene();
}

void RenderingWidget::initializeGL()
{
  glClearColor(1., 1., 1., 0.);
  glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
  glDepthMask(GL_TRUE);
  glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

  mCamera.setPosition(Vector3f(-200, -200, -200));
  mCamera.setTarget(Vector3f(0, 0, 0));
  mInitFrame.orientation = mCamera.orientation().inverse();
  mInitFrame.position = mCamera.viewMatrix().translation();
}

void RenderingWidget::resizeGL(int width, int height)
{
    mCamera.setViewport(width,height);
}

void RenderingWidget::setNavMode(int m)
{
  mNavMode = NavMode(m);
}

void RenderingWidget::setLerpMode(int m)
{
  mLerpMode = LerpMode(m);
}

void RenderingWidget::setRotationMode(int m)
{
  mRotationMode = RotationMode(m);
}

void RenderingWidget::resetCamera()
{
  if (mAnimate)
    stopAnimation();
  m_timeline.clear();
  Frame aux0 = mCamera.frame();
  aux0.orientation = aux0.orientation.inverse();
  aux0.position = mCamera.viewMatrix().translation();
  m_timeline[0] = aux0;

  Vector3f currentTarget = mCamera.target();
  mCamera.setTarget(Vector3f::Zero());

  // compute the rotation duration to move the camera to the target
  Frame aux1 = mCamera.frame();
  aux1.orientation = aux1.orientation.inverse();
  aux1.position = mCamera.viewMatrix().translation();
  float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9;
  if (duration<0.1) duration = 0.1;

  // put the camera at that time step:
  aux1 = aux0.lerp(duration/2,mInitFrame);
  // and make it look at the target again
  aux1.orientation = aux1.orientation.inverse();
  aux1.position = - (aux1.orientation * aux1.position);
  mCamera.setFrame(aux1);
  mCamera.setTarget(Vector3f::Zero());

  // add this camera keyframe
  aux1.orientation = aux1.orientation.inverse();
  aux1.position = mCamera.viewMatrix().translation();
  m_timeline[duration] = aux1;

  m_timeline[2] = mInitFrame;
  m_alpha = 0;
  animate();
  connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
  m_timer.start(1000/30);
  mAnimate = true;
}

QWidget* RenderingWidget::createNavigationControlWidget()
{
  QWidget* panel = new QWidget();
  QVBoxLayout* layout = new QVBoxLayout();

  {
    QPushButton* but = new QPushButton("reset");
    but->setToolTip("move the camera to initial position (with animation)");
    layout->addWidget(but);
    connect(but, SIGNAL(clicked()), this, SLOT(resetCamera()));
  }
  {
    // navigation mode
    QGroupBox* box = new QGroupBox("navigation mode");
    QVBoxLayout* boxLayout = new QVBoxLayout;
    QButtonGroup* group = new QButtonGroup(panel);
    QRadioButton* but;
    but = new QRadioButton("turn around");
    but->setToolTip("look around an object");
    group->addButton(but, NavTurnAround);
    boxLayout->addWidget(but);
    but = new QRadioButton("fly");
    but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)");
    group->addButton(but, NavFly);
    boxLayout->addWidget(but);
    group->button(mNavMode)->setChecked(true);
    connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int)));
    box->setLayout(boxLayout);
    layout->addWidget(box);
  }
  {
    // track ball, rotation mode
    QGroupBox* box = new QGroupBox("rotation mode");
    QVBoxLayout* boxLayout = new QVBoxLayout;
    QButtonGroup* group = new QButtonGroup(panel);
    QRadioButton* but;
    but = new QRadioButton("stable trackball");
    group->addButton(but, RotationStable);
    boxLayout->addWidget(but);
    but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere");
    but = new QRadioButton("standard rotation");
    group->addButton(but, RotationStandard);
    boxLayout->addWidget(but);
    but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes");
    group->button(mRotationMode)->setChecked(true);
    connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int)));
    box->setLayout(boxLayout);
    layout->addWidget(box);
  }
  {
    // interpolation mode
    QGroupBox* box = new QGroupBox("spherical interpolation");
    QVBoxLayout* boxLayout = new QVBoxLayout;
    QButtonGroup* group = new QButtonGroup(panel);
    QRadioButton* but;
    but = new QRadioButton("quaternion slerp");
    group->addButton(but, LerpQuaternion);
    boxLayout->addWidget(but);
    but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations");
    but = new QRadioButton("euler angles");
    group->addButton(but, LerpEulerAngles);
    boxLayout->addWidget(but);
    but->setToolTip("use Euler angles to interpolate orientations");
    group->button(mNavMode)->setChecked(true);
    connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int)));
    box->setLayout(boxLayout);
    layout->addWidget(box);
  }
  layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding));
  panel->setLayout(layout);
  return panel;
}

QuaternionDemo::QuaternionDemo()
{
  mRenderingWidget = new RenderingWidget();
  setCentralWidget(mRenderingWidget);

  QDockWidget* panel = new QDockWidget("navigation", this);
  panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea));
  addDockWidget(Qt::RightDockWidgetArea, panel);
  panel->setWidget(mRenderingWidget->createNavigationControlWidget());
}

int main(int argc, char *argv[])
{
  std::cout << "Navigation:\n";
  std::cout << "  left button:           rotate around the target\n";
  std::cout << "  middle button:         zoom\n";
  std::cout << "  left button + ctrl     quake rotate (rotate around camera position)\n";
  std::cout << "  middle button + ctrl   walk (progress along camera's z direction)\n";
  std::cout << "  left button:           pan (translate in the XY camera's plane)\n\n";
  std::cout << "R : move the camera to initial position\n";
  std::cout << "A : start/stop animation\n";
  std::cout << "C : clear the animation\n";
  std::cout << "G : add a key frame\n";

  QApplication app(argc, argv);
  QuaternionDemo demo;
  demo.resize(600,500);
  demo.show();
  return app.exec();
}

#include "quaternion_demo.moc"