1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
SUBROUTINE SROTM(N,SX,INCX,SY,INCY,SPARAM)
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
REAL SPARAM(5),SX(*),SY(*)
* ..
*
* Purpose
* =======
*
* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX
*
* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN
* (DX**T)
*
* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY.
* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS..
*
* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0
*
* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0)
* H=( ) ( ) ( ) ( )
* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0).
* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM.
*
*
* Arguments
* =========
*
* N (input) INTEGER
* number of elements in input vector(s)
*
* SX (input/output) REAL array, dimension N
* double precision vector with N elements
*
* INCX (input) INTEGER
* storage spacing between elements of SX
*
* SY (input/output) REAL array, dimension N
* double precision vector with N elements
*
* INCY (input) INTEGER
* storage spacing between elements of SY
*
* SPARAM (input/output) REAL array, dimension 5
* SPARAM(1)=SFLAG
* SPARAM(2)=SH11
* SPARAM(3)=SH21
* SPARAM(4)=SH12
* SPARAM(5)=SH22
*
* =====================================================================
*
* .. Local Scalars ..
REAL SFLAG,SH11,SH12,SH21,SH22,TWO,W,Z,ZERO
INTEGER I,KX,KY,NSTEPS
* ..
* .. Data statements ..
DATA ZERO,TWO/0.E0,2.E0/
* ..
*
SFLAG = SPARAM(1)
IF (N.LE.0 .OR. (SFLAG+TWO.EQ.ZERO)) GO TO 140
IF (.NOT. (INCX.EQ.INCY.AND.INCX.GT.0)) GO TO 70
*
NSTEPS = N*INCX
IF (SFLAG) 50,10,30
10 CONTINUE
SH12 = SPARAM(4)
SH21 = SPARAM(3)
DO 20 I = 1,NSTEPS,INCX
W = SX(I)
Z = SY(I)
SX(I) = W + Z*SH12
SY(I) = W*SH21 + Z
20 CONTINUE
GO TO 140
30 CONTINUE
SH11 = SPARAM(2)
SH22 = SPARAM(5)
DO 40 I = 1,NSTEPS,INCX
W = SX(I)
Z = SY(I)
SX(I) = W*SH11 + Z
SY(I) = -W + SH22*Z
40 CONTINUE
GO TO 140
50 CONTINUE
SH11 = SPARAM(2)
SH12 = SPARAM(4)
SH21 = SPARAM(3)
SH22 = SPARAM(5)
DO 60 I = 1,NSTEPS,INCX
W = SX(I)
Z = SY(I)
SX(I) = W*SH11 + Z*SH12
SY(I) = W*SH21 + Z*SH22
60 CONTINUE
GO TO 140
70 CONTINUE
KX = 1
KY = 1
IF (INCX.LT.0) KX = 1 + (1-N)*INCX
IF (INCY.LT.0) KY = 1 + (1-N)*INCY
*
IF (SFLAG) 120,80,100
80 CONTINUE
SH12 = SPARAM(4)
SH21 = SPARAM(3)
DO 90 I = 1,N
W = SX(KX)
Z = SY(KY)
SX(KX) = W + Z*SH12
SY(KY) = W*SH21 + Z
KX = KX + INCX
KY = KY + INCY
90 CONTINUE
GO TO 140
100 CONTINUE
SH11 = SPARAM(2)
SH22 = SPARAM(5)
DO 110 I = 1,N
W = SX(KX)
Z = SY(KY)
SX(KX) = W*SH11 + Z
SY(KY) = -W + SH22*Z
KX = KX + INCX
KY = KY + INCY
110 CONTINUE
GO TO 140
120 CONTINUE
SH11 = SPARAM(2)
SH12 = SPARAM(4)
SH21 = SPARAM(3)
SH22 = SPARAM(5)
DO 130 I = 1,N
W = SX(KX)
Z = SY(KY)
SX(KX) = W*SH11 + Z*SH12
SY(KY) = W*SH21 + Z*SH22
KX = KX + INCX
KY = KY + INCY
130 CONTINUE
140 CONTINUE
RETURN
END
|