aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas/level1_impl.h
blob: 71bd534b74f62db39d84c45fdfebfebafec01be3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "common.h"

int EIGEN_BLAS_FUNC(axpy)(const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *py, const int *incy)
{
  const Scalar* x = reinterpret_cast<const Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);
  Scalar alpha  = *reinterpret_cast<const Scalar*>(palpha);

  if(*n<=0) return 0;

  if(*incx==1 && *incy==1)    make_vector(y,*n) += alpha * make_vector(x,*n);
  else if(*incx>0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,*incx);
  else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,*incx);
  else if(*incx<0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,-*incx).reverse();
  else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,-*incx).reverse();

  return 0;
}

int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  // be careful, *incx==0 is allowed !!
  if(*incx==1 && *incy==1)
    make_vector(y,*n) = make_vector(x,*n);
  else
  {
    if(*incx<0) x = x - (*n-1)*(*incx);
    if(*incy<0) y = y - (*n-1)*(*incy);
    for(int i=0;i<*n;++i)
    {
      *y = *x;
      x += *incx;
      y += *incy;
    }
  }

  return 0;
}

int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
{
  using std::sqrt;
  using std::abs;

  Scalar& a = *reinterpret_cast<Scalar*>(pa);
  Scalar& b = *reinterpret_cast<Scalar*>(pb);
  RealScalar* c = pc;
  Scalar* s = reinterpret_cast<Scalar*>(ps);

  #if !ISCOMPLEX
  Scalar r,z;
  Scalar aa = abs(a);
  Scalar ab = abs(b);
  if((aa+ab)==Scalar(0))
  {
    *c = 1;
    *s = 0;
    r = 0;
    z = 0;
  }
  else
  {
    r = sqrt(a*a + b*b);
    Scalar amax = aa>ab ? a : b;
    r = amax>0 ? r : -r;
    *c = a/r;
    *s = b/r;
    z = 1;
    if (aa > ab) z = *s;
    if (ab > aa && *c!=RealScalar(0))
      z = Scalar(1)/ *c;
  }
  *pa = r;
  *pb = z;
  #else
  Scalar alpha;
  RealScalar norm,scale;
  if(abs(a)==RealScalar(0))
  {
    *c = RealScalar(0);
    *s = Scalar(1);
    a = b;
  }
  else
  {
    scale = abs(a) + abs(b);
    norm = scale*sqrt((numext::abs2(a/scale)) + (numext::abs2(b/scale)));
    alpha = a/abs(a);
    *c = abs(a)/norm;
    *s = alpha*numext::conj(b)/norm;
    a = alpha*norm;
  }
  #endif

//   JacobiRotation<Scalar> r;
//   r.makeGivens(a,b);
//   *c = r.c();
//   *s = r.s();

  return 0;
}

int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);

  if(*incx==1)  make_vector(x,*n) *= alpha;
  else          make_vector(x,*n,std::abs(*incx)) *= alpha;

  return 0;
}

int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  if(*incx==1 && *incy==1)    make_vector(y,*n).swap(make_vector(x,*n));
  else if(*incx>0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,*incx));
  else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,*incx));
  else if(*incx<0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,-*incx).reverse());
  else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,-*incx).reverse());

  return 1;
}