aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas/level1_impl.h
blob: c508626db435cbc8f68af25ec58d9dc46ab5bcb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "common.h"

int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);
  Scalar alpha  = *reinterpret_cast<Scalar*>(palpha);

  if(*incx==1 && *incy==1)
    vector(y,*n) += alpha * vector(x,*n);
  else
    vector(y,*n,*incy) += alpha * vector(x,*n,*incx);

  return 1;
}

// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
{
  int size = IsComplex ? 2* *n : *n;

  if(*incx==1)
    return vector(px,size).cwise().abs().sum();
  else
    return vector(px,size,*incx).cwise().abs().sum();

  return 1;
}

int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  int size = IsComplex ? 2* *n : *n;

  if(*incx==1 && *incy==1)
    vector(py,size) = vector(px,size);
  else
    vector(py,size,*incy) = vector(px,size,*incx);

  return 1;
}

// computes a vector-vector dot product.
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  if(*incx==1 && *incy==1)
    return (vector(x,*n).cwise()*vector(y,*n)).sum();

  return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum();
}

/*

// computes a vector-vector dot product with extended precision.
Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  // TODO
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  if(*incx==1 && *incy==1)
    return vector(x,*n).dot(vector(y,*n));

  return vector(x,*n,*incx).dot(vector(y,*n,*incy));
}

*/

#if ISCOMPLEX

// computes a dot product of a conjugated vector with another vector.
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  if(*incx==1 && *incy==1)
    return vector(x,*n).dot(vector(y,*n));

  return vector(x,*n,*incx).dot(vector(y,*n,*incy));
}

// computes a vector-vector dot product without complex conjugation.
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  if(*incx==1 && *incy==1)
    return (vector(x,*n).cwise()*vector(y,*n)).sum();

  return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum();
}

#endif // ISCOMPLEX

// computes the Euclidean norm of a vector.
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);

  if(*incx==1)
    return vector(x,*n).norm();

  return vector(x,*n,*incx).norm();
}

int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);
  Scalar c = *reinterpret_cast<Scalar*>(pc);
  Scalar s = *reinterpret_cast<Scalar*>(ps);

  StridedVectorType vx(vector(x,*n,*incx));
  StridedVectorType vy(vector(y,*n,*incy));
  ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
  return 1;
}

int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
{
  Scalar a = *reinterpret_cast<Scalar*>(pa);
  Scalar b = *reinterpret_cast<Scalar*>(pb);
  Scalar* c = reinterpret_cast<Scalar*>(pc);
  Scalar* s = reinterpret_cast<Scalar*>(ps);

  PlanarRotation<Scalar> r;
  r.makeGivens(a,b);
  *c = r.c();
  *s = r.s();

  return 1;
}

#if !ISCOMPLEX
/*
// performs rotation of points in the modified plane.
int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  // TODO

  return 0;
}

// computes the modified parameters for a Givens rotation.
int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param)
{
  // TODO

  return 0;
}
*/
#endif // !ISCOMPLEX

int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *px, int *incx, RealScalar *palpha)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);

  if(*incx==1)
    vector(x,*n) *= alpha;

  vector(x,*n,*incx) *= alpha;

  return 1;
}

int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
  int size = IsComplex ? 2* *n : *n;

  if(*incx==1 && *incy==1)
    vector(py,size).swap(vector(px,size));
  else
    vector(py,size,*incy).swap(vector(px,size,*incx));

  return 1;
}

#if !ISCOMPLEX

RealScalar EIGEN_BLAS_FUNC(casum)(int *n, RealScalar *px, int *incx)
{
  Complex* x = reinterpret_cast<Complex*>(px);

  if(*incx==1)
    return vector(x,*n).cwise().abs().sum();
  else
    return vector(x,*n,*incx).cwise().abs().sum();

  return 1;
}

#endif // ISCOMPLEX