aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas/level1_cplx_impl.h
blob: 299a4ac00c51d8473eebb5b175b45258bc72c712 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#include "common.h"

struct scalar_norm1_op {
  typedef RealScalar result_type;
  EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
  inline RealScalar operator() (const Scalar& a) const { return internal::norm1(a); }
};
namespace Eigen {
  namespace internal {
    template<> struct functor_traits<scalar_norm1_op >
    {
      enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
    };
  }
}

// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
{
//   std::cerr << "__asum " << *n << " " << *incx << "\n";
  Complex* x = reinterpret_cast<Complex*>(px);

  if(*n<=0) return 0;

  if(*incx==1)  return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
  else          return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
}

// computes a dot product of a conjugated vector with another vector.
int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
{
//   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";

  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);
  Scalar* res = reinterpret_cast<Scalar*>(pres);

  if(*incx==1 && *incy==1)    *res = (vector(x,*n).dot(vector(y,*n)));
  else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
  else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
  else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
  else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
  return 0;
}

// computes a vector-vector dot product without complex conjugation.
int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
{
//   std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";

  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);
  Scalar* res = reinterpret_cast<Scalar*>(pres);

  if(*incx==1 && *incy==1)    *res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
  else if(*incx>0 && *incy>0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
  else if(*incx<0 && *incy>0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
  else if(*incx>0 && *incy<0) *res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
  else if(*incx<0 && *incy<0) *res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
  return 0;
}

RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
{
//   std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);

  if(*incx==1)
    return vector(x,*n).stableNorm();

  return vector(x,*n,*incx).stableNorm();
}

int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);
  RealScalar c = *pc;
  RealScalar s = *ps;

  StridedVectorType vx(vector(x,*n,std::abs(*incx)));
  StridedVectorType vy(vector(y,*n,std::abs(*incy)));

  Reverse<StridedVectorType> rvx(vx);
  Reverse<StridedVectorType> rvy(vy);

  // TODO implement mixed real-scalar rotations
       if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
  else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
  else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s));

  return 0;
}

int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  RealScalar alpha = *palpha;

//   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";

  if(*incx==1)  vector(x,*n) *= alpha;
  else          vector(x,*n,std::abs(*incx)) *= alpha;

  return 0;
}