aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas/level1_cplx_impl.h
blob: 6c7edd7eb374b74a2fcfea8dd8d30b62addf96fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "common.h"

struct scalar_norm1_op {
  typedef RealScalar result_type;
  EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
  inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
};
namespace Eigen {
  namespace internal {
    template<> struct functor_traits<scalar_norm1_op >
    {
      enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
    };
  }
}

// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(asum))(int *n, RealScalar *px, int *incx)
{
//   std::cerr << "__asum " << *n << " " << *incx << "\n";
  Complex* x = reinterpret_cast<Complex*>(px);

  if(*n<=0) return 0;

  if(*incx==1)  return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
  else          return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
}

int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amax))(int *n, RealScalar *px, int *incx)
{
  if(*n<=0) return 0;
  Scalar* x = reinterpret_cast<Scalar*>(px);

  DenseIndex ret;
  if(*incx==1)  make_vector(x,*n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
  else          make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
  return int(ret)+1;
}

int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amin))(int *n, RealScalar *px, int *incx)
{
  if(*n<=0) return 0;
  Scalar* x = reinterpret_cast<Scalar*>(px);

  DenseIndex ret;
  if(*incx==1)  make_vector(x,*n).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
  else          make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
  return int(ret)+1;
}

// computes a dot product of a conjugated vector with another vector.
int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
{
//   std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
  Scalar* res = reinterpret_cast<Scalar*>(pres);

  if(*n<=0)
  {
    *res = Scalar(0);
    return 0;
  }

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).dot(make_vector(y,*n)));
  else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy)));
  else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy)));
  else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse()));
  else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse()));
  return 0;
}

// computes a vector-vector dot product without complex conjugation.
int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
{
  Scalar* res = reinterpret_cast<Scalar*>(pres);

  if(*n<=0)
  {
    *res = Scalar(0);
    return 0;
  }

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  if(*incx==1 && *incy==1)    *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
  else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
  else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
  else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
  else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
  return 0;
}

RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(nrm2))(int *n, RealScalar *px, int *incx)
{
//   std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);

  if(*incx==1)
    return make_vector(x,*n).stableNorm();

  return make_vector(x,*n,*incx).stableNorm();
}

int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot))(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);
  RealScalar c = *pc;
  RealScalar s = *ps;

  StridedVectorType vx(make_vector(x,*n,std::abs(*incx)));
  StridedVectorType vy(make_vector(y,*n,std::abs(*incy)));

  Reverse<StridedVectorType> rvx(vx);
  Reverse<StridedVectorType> rvy(vy);

  // TODO implement mixed real-scalar rotations
       if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
  else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
  else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s));

  return 0;
}

int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
  if(*n<=0) return 0;

  Scalar* x = reinterpret_cast<Scalar*>(px);
  RealScalar alpha = *palpha;

//   std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";

  if(*incx==1)  make_vector(x,*n) *= alpha;
  else          make_vector(x,*n,std::abs(*incx)) *= alpha;

  return 0;
}