aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/tensors/tensor_benchmarks.h
blob: 525b9acdae83a51a19885eb3ce99fc0dd97311f0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_

typedef int TensorIndex;
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int

#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "testing/base/public/benchmark.h"

using Eigen::Tensor;
using Eigen::TensorMap;


// TODO(bsteiner): also templatize on the input type since we have users
// for int8 as well as floats.
template <typename Device> class BenchmarkSuite {
 public:
  BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n)
      : m_(m), k_(k), n_(n), device_(device) {
    initialize();
  }

  BenchmarkSuite(const Device& device, size_t m)
      : m_(m), k_(m), n_(m), device_(device) {
    initialize();
  }

  ~BenchmarkSuite() {
    device_.deallocate(a_);
    device_.deallocate(b_);
    device_.deallocate(c_);
  }

  void memcpy(int num_iters) {
    eigen_assert(m_ == k_ && k_ == n_);
    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      device_.memcpy(c_, a_, m_ * m_ * sizeof(float));
    }
    // Record the number of values copied per second
    finalizeBenchmark(m_ * m_ * num_iters);
  }

  void random(int num_iters) {
    eigen_assert(m_ == k_ && k_ == n_);
    const Eigen::array<TensorIndex, 2> sizes(m_, m_);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = C.random();
    }
    // Record the number of random numbers generated per second
    finalizeBenchmark(m_ * m_ * num_iters);
  }

  void slicing(int num_iters) {
    eigen_assert(m_ == k_ && k_ == n_);
    const Eigen::array<TensorIndex, 2> sizes(m_, m_);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);

    const Eigen::DSizes<TensorIndex, 2> quarter_sizes(Eigen::array<TensorIndex, 2>(m_/2, m_/2));
    const Eigen::DSizes<TensorIndex, 2> first_quadrant(Eigen::array<TensorIndex, 2>(0, 0));
    const Eigen::DSizes<TensorIndex, 2> second_quadrant(Eigen::array<TensorIndex, 2>(0, m_/2));
    const Eigen::DSizes<TensorIndex, 2> third_quadrant(Eigen::array<TensorIndex, 2>(m_/2, 0));
    const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(Eigen::array<TensorIndex, 2>(m_/2, m_/2));

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.slice(first_quadrant, quarter_sizes).device(device_) =
          A.slice(first_quadrant, quarter_sizes);
      C.slice(second_quadrant, quarter_sizes).device(device_) =
          B.slice(second_quadrant, quarter_sizes);
      C.slice(third_quadrant, quarter_sizes).device(device_) =
          A.slice(third_quadrant, quarter_sizes);
      C.slice(fourth_quadrant, quarter_sizes).device(device_) =
          B.slice(fourth_quadrant, quarter_sizes);
    }
    // Record the number of values copied from the rhs slice to the lhs slice
    // each second
    finalizeBenchmark(m_ * m_ * num_iters);
  }

  void shuffling(int num_iters) {
    eigen_assert(m_ == n_);
    const Eigen::array<TensorIndex, 2> size_a(m_, k_);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
    const Eigen::array<TensorIndex, 2> size_b(k_, m_);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);

    const Eigen::array<int, 2> shuffle(1, 0);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      B.device(device_) = A.shuffle(shuffle);
    }
    // Record the number of values shuffled from A and copied to B each second
    finalizeBenchmark(m_ * k_ * num_iters);
  }

 void padding(int num_iters) {
    eigen_assert(m_ == k_);
    const Eigen::array<TensorIndex, 2> size_a(m_, k_-3);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
    const Eigen::array<TensorIndex, 2> size_b(k_, m_);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);

    Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
    paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
    paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      B.device(device_) = A.pad(paddings);
    }
    // Record the number of values copied from the padded tensor A each second
    finalizeBenchmark(m_ * k_ * num_iters);
  }

 void striding(int num_iters) {
    eigen_assert(m_ == k_);
    const Eigen::array<TensorIndex, 2> size_a(m_, k_);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
    const Eigen::array<TensorIndex, 2> size_b(m_, k_ / 2);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);

    const Eigen::array<TensorIndex, 2> strides(1, 2);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      B.device(device_) = A.stride(strides);
    }
    // Record the number of values copied from the padded tensor A each second
    finalizeBenchmark(m_ * k_ * num_iters);
  }

  void broadcasting(int num_iters) {
    const Eigen::array<TensorIndex, 2> size_a(m_, 1);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
    const Eigen::array<TensorIndex, 2> size_c(m_, n_);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, size_c);

#if defined(__CUDACC__)
    // nvcc doesn't support cxx11
    const Eigen::array<int, 2> broadcast(1, n_);
#else
    // Take advantage of cxx11 to give the compiler information it can use to
    // optimize the code.
    Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
    broadcast.set(1, n_);
#endif

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = A.broadcast(broadcast);
    }
    // Record the number of values broadcasted from A and copied to C each second
    finalizeBenchmark(m_ * n_ * num_iters);
  }

  void coeffWiseOp(int num_iters) {
    eigen_assert(m_ == k_ && k_ == n_);
    const Eigen::array<TensorIndex, 2> sizes(m_, m_);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7);
    }
    // Record the number of FLOP executed per second (2 multiplications and
    // 1 addition per value)
    finalizeBenchmark(3 * m_ * m_ * num_iters);
  }

  void algebraicFunc(int num_iters) {
    eigen_assert(m_ == k_ && k_ == n_);
    const Eigen::array<TensorIndex, 2> sizes(m_, m_);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
    }
    // Record the number of FLOP executed per second (assuming one operation
    // per value)
    finalizeBenchmark(m_ * m_ * num_iters);
  }

  void transcendentalFunc(int num_iters) {
    eigen_assert(m_ == k_ && k_ == n_);
    const Eigen::array<TensorIndex, 2> sizes(m_, m_);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = A.exp() + B.log();
    }
    // Record the number of FLOP executed per second (assuming one operation
    // per value)
    finalizeBenchmark(m_ * m_ * num_iters);
  }

  // Simple reduction
  void reduction(int num_iters) {
    const Eigen::array<TensorIndex, 2> input_size(k_, n_);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, input_size);
    const Eigen::array<TensorIndex, 1> output_size(n_);
    TensorMap<Tensor<float, 1>, Eigen::Aligned> C(c_, output_size);

    const Eigen::array<TensorIndex, 1> sum_along_dim(0);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = B.sum(sum_along_dim);
    }
    // Record the number of FLOP executed per second (assuming one operation
    // per value)
    finalizeBenchmark(m_ * m_ * num_iters);
  }

  // do a contraction which is equivalent to a matrix multiplication
  void contraction(int num_iters) {
    const Eigen::array<TensorIndex, 2> sizeA(m_, k_);
    const Eigen::array<TensorIndex, 2> sizeB(k_, n_);
    const Eigen::array<TensorIndex, 2> sizeC(m_, n_);

    const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizeA);
    const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizeB);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizeC);

    typedef typename Tensor<float, 2>::DimensionPair DimPair;
    const Eigen::array<DimPair, 1> dims(DimPair(1, 0));

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = A.contract(B, dims);
    }
    // Record the number of FLOP executed per second (size_ multiplications and
    // additions for each value in the resulting tensor)
    finalizeBenchmark(static_cast<int64>(2) * m_ * n_ * k_ * num_iters);
  }

  void convolution(int num_iters, int kernel_x, int kernel_y) {
    const Eigen::array<TensorIndex, 2> input_sizes(m_, n_);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, input_sizes);
    const Eigen::array<TensorIndex, 2> kernel_sizes(kernel_x, kernel_y);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, kernel_sizes);
    const Eigen::array<TensorIndex, 2> result_sizes(
        m_ - kernel_x + 1, n_ - kernel_y + 1);
    TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, result_sizes);
    Eigen::array<Tensor<float, 2>::Index, 2> dims(0, 1);

    StartBenchmarkTiming();
    for (int iter = 0; iter < num_iters; ++iter) {
      C.device(device_) = A.convolve(B, dims);
    }
    // Record the number of FLOP executed per second (kernel_size
    // multiplications and additions for each value in the resulting tensor)
    finalizeBenchmark(
        (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * 2 * num_iters);
  }

 private:
  void initialize() {
    a_ = (float *) device_.allocate(m_ * k_ * sizeof(float));
    b_ = (float *) device_.allocate(k_ * n_ * sizeof(float));
    c_ = (float *) device_.allocate(m_ * n_ * sizeof(float));

    // Initialize the content of the memory pools to prevent asan from
    // complaining.
    device_.memset(a_, 12, m_ * k_ * sizeof(float));
    device_.memset(b_, 23, k_ * n_ * sizeof(float));
    device_.memset(c_, 31, m_ * n_ * sizeof(float));

    BenchmarkUseRealTime();
  }

  inline void finalizeBenchmark(int64 num_items) {
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
    if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) {
      device_.synchronize();
    }
#endif
    StopBenchmarkTiming();
    SetBenchmarkItemsProcessed(num_items);
  }


  size_t m_;
  size_t k_;
  size_t n_;
  float* a_;
  float* b_;
  float* c_;
  Device device_;
};
#endif  // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_