aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/spbench/spbenchsolver.h
blob: 609c7c39d68efc2ddde87e7e08bd2661bbb959fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.


#include <iostream>
#include <fstream>
#include "Eigen/SparseCore"
#include <bench/BenchTimer.h>
#include <cstdlib>
#include <string>
#include <Eigen/Cholesky>
#include <Eigen/Jacobi>
#include <Eigen/Householder>
#include <Eigen/IterativeLinearSolvers>
#include <unsupported/Eigen/IterativeSolvers>
#include <Eigen/LU>
#include <unsupported/Eigen/SparseExtra>

#ifdef EIGEN_CHOLMOD_SUPPORT
#include <Eigen/CholmodSupport>
#endif

#ifdef EIGEN_UMFPACK_SUPPORT
#include <Eigen/UmfPackSupport>
#endif

#ifdef EIGEN_PARDISO_SUPPORT
#include <Eigen/PardisoSupport>
#endif

#ifdef EIGEN_SUPERLU_SUPPORT
#include <Eigen/SuperLUSupport>
#endif

#ifdef EIGEN_PASTIX_SUPPORT
#include <Eigen/PaStiXSupport>
#endif

// CONSTANTS
#define EIGEN_UMFPACK  0
#define EIGEN_SUPERLU  1
#define EIGEN_PASTIX  2
#define EIGEN_PARDISO  3
#define EIGEN_BICGSTAB  4
#define EIGEN_BICGSTAB_ILUT  5
#define EIGEN_GMRES 6
#define EIGEN_GMRES_ILUT 7
#define EIGEN_SIMPLICIAL_LDLT  8
#define EIGEN_CHOLMOD_LDLT  9
#define EIGEN_PASTIX_LDLT  10
#define EIGEN_PARDISO_LDLT  11
#define EIGEN_SIMPLICIAL_LLT  12
#define EIGEN_CHOLMOD_SUPERNODAL_LLT  13
#define EIGEN_CHOLMOD_SIMPLICIAL_LLT  14
#define EIGEN_PASTIX_LLT  15
#define EIGEN_PARDISO_LLT  16
#define EIGEN_CG  17
#define EIGEN_CG_PRECOND  18
#define EIGEN_ALL_SOLVERS  19

using namespace Eigen;
using namespace std; 

struct Stats{
  ComputationInfo info;
  double total_time;
  double compute_time;
  double solve_time; 
  double rel_error;
  int memory_used; 
  int iterations;
  int isavail; 
  int isIterative;
}; 

// Global variables for input parameters
int MaximumIters; // Maximum number of iterations
double RelErr; // Relative error of the computed solution

template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
template<> inline float test_precision<float>() { return 1e-3f; }                                                             
template<> inline double test_precision<double>() { return 1e-6; }                                                            
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }

void printStatheader(std::ofstream& out)
{
  int LUcnt = 0; 
  string LUlist =" ", LLTlist = "<TH > LLT", LDLTlist = "<TH > LDLT ";
  
#ifdef EIGEN_UMFPACK_SUPPORT
  LUlist += "<TH > UMFPACK "; LUcnt++;
#endif
#ifdef EIGEN_SUPERLU_SUPPORT
  LUlist += "<TH > SUPERLU "; LUcnt++;
#endif
#ifdef EIGEN_CHOLMOD_SUPPORT
  LLTlist += "<TH > CHOLMOD SP LLT<TH > CHOLMOD LLT"; 
  LDLTlist += "<TH>CHOLMOD LDLT"; 
#endif
#ifdef EIGEN_PARDISO_SUPPORT
  LUlist += "<TH > PARDISO LU";  LUcnt++;
  LLTlist += "<TH > PARDISO LLT"; 
  LDLTlist += "<TH > PARDISO LDLT";
#endif
#ifdef EIGEN_PASTIX_SUPPORT
  LUlist += "<TH > PASTIX LU";  LUcnt++;
  LLTlist += "<TH > PASTIX LLT"; 
  LDLTlist += "<TH > PASTIX LDLT";
#endif
  
  out << "<TABLE border=\"1\" >\n ";
  out << "<TR><TH>Matrix <TH> N <TH> NNZ <TH> ";
  if (LUcnt) out << LUlist;
  out << " <TH >BiCGSTAB <TH >BiCGSTAB+ILUT"<< "<TH >GMRES+ILUT" <<LDLTlist << LLTlist <<  "<TH> CG "<< std::endl;
}


template<typename Solver, typename Scalar>
Stats call_solver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
{
  Stats stat; 
  Matrix<Scalar, Dynamic, 1> x; 
  BenchTimer timer; 
  timer.reset();
  timer.start();
  solver.compute(A); 
  if (solver.info() != Success)
  {
    stat.info = NumericalIssue;
    std::cerr << "Solver failed ... \n";
    return stat;
  }
  timer.stop(); 
  stat.compute_time = timer.value();
  
  timer.reset();
  timer.start();
  x = solver.solve(b); 
  if (solver.info() == NumericalIssue)
  {
    stat.info = NumericalIssue;
    std::cerr << "Solver failed ... \n";
    return stat;
  }
  
  timer.stop();
  stat.solve_time = timer.value();
  stat.total_time = stat.solve_time + stat.compute_time;
  stat.memory_used = 0; 
  // Verify the relative error
  if(refX.size() != 0)
    stat.rel_error = (refX - x).norm()/refX.norm();
  else 
  {
    // Compute the relative residual norm
    Matrix<Scalar, Dynamic, 1> temp; 
    temp = A * x; 
    stat.rel_error = (b-temp).norm()/b.norm();
  }
  if ( stat.rel_error > RelErr )
  {
    stat.info = NoConvergence; 
    return stat;
  }
  else 
  {
    stat.info = Success;
    return stat; 
  }
}

template<typename Solver, typename Scalar>
Stats call_directsolver(Solver& solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
{
    Stats stat;
    stat = call_solver(solver, A, b, refX);
    return stat;
}

template<typename Solver, typename Scalar>
Stats call_itersolver(Solver &solver, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX)
{
  Stats stat;
  solver.setTolerance(RelErr); 
  solver.setMaxIterations(MaximumIters);
  
  stat = call_solver(solver, A, b, refX); 
  stat.iterations = solver.iterations();
  return stat; 
}

inline void printStatItem(Stats *stat, int solver_id, int& best_time_id, double& best_time_val)
{
  stat[solver_id].isavail = 1;  
  
  if (stat[solver_id].info == NumericalIssue)
  {
    cout << " SOLVER FAILED ... Probably a numerical issue \n";
    return;
  }
  if (stat[solver_id].info == NoConvergence){
    cout << "REL. ERROR " <<  stat[solver_id].rel_error;
    if(stat[solver_id].isIterative == 1)
      cout << " (" << stat[solver_id].iterations << ") \n"; 
    return;
  }
  
  // Record the best CPU time 
  if (!best_time_val) 
  {
    best_time_val = stat[solver_id].total_time;
    best_time_id = solver_id;
  }
  else if (stat[solver_id].total_time < best_time_val)
  {
    best_time_val = stat[solver_id].total_time;
    best_time_id = solver_id; 
  }
  // Print statistics to standard output
  if (stat[solver_id].info == Success){
    cout<< "COMPUTE TIME : " << stat[solver_id].compute_time<< " \n";
    cout<< "SOLVE TIME : " << stat[solver_id].solve_time<< " \n";
    cout<< "TOTAL TIME : " << stat[solver_id].total_time<< " \n";
    cout << "REL. ERROR : " << stat[solver_id].rel_error ;
    if(stat[solver_id].isIterative == 1) {
      cout << " (" << stat[solver_id].iterations << ") ";
    }
    cout << std::endl;
  }
    
}


/* Print the results from all solvers corresponding to a particular matrix 
 * The best CPU time is printed in bold
 */
inline void printHtmlStatLine(Stats *stat, int best_time_id, string& statline)
{
  
  string markup;
  ostringstream compute,solve,total,error;
  for (int i = 0; i < EIGEN_ALL_SOLVERS; i++) 
  {
    if (stat[i].isavail == 0) continue;
    if(i == best_time_id)
      markup = "<TD style=\"background-color:red\">";
    else
      markup = "<TD>";
    
    if (stat[i].info == Success){
      compute << markup << stat[i].compute_time;
      solve << markup << stat[i].solve_time;
      total << markup << stat[i].total_time; 
      error << " <TD> " << stat[i].rel_error;
      if(stat[i].isIterative == 1) {
        error << " (" << stat[i].iterations << ") ";
      }
    }
    else {
      compute << " <TD> -" ;
      solve << " <TD> -" ;
      total << " <TD> -" ;
      if(stat[i].info == NoConvergence){
        error << " <TD> "<< stat[i].rel_error ;
        if(stat[i].isIterative == 1)
          error << " (" << stat[i].iterations << ") "; 
      }
      else    error << " <TD> - ";
    }
  }
  
  statline = "<TH>Compute Time " + compute.str() + "\n" 
                        +  "<TR><TH>Solve Time " + solve.str() + "\n" 
                        +  "<TR><TH>Total Time " + total.str() + "\n" 
                        +"<TR><TH>Error(Iter)" + error.str() + "\n"; 
  
}

template <typename Scalar>
int SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, Stats *stat)
{
  typedef SparseMatrix<Scalar, ColMajor> SpMat; 
  // First, deal with Nonsymmetric and symmetric matrices
  int best_time_id = 0; 
  double best_time_val = 0.0;
  //UMFPACK
  #ifdef EIGEN_UMFPACK_SUPPORT
  {
    cout << "Solving with UMFPACK LU ... \n"; 
    UmfPackLU<SpMat> solver; 
    stat[EIGEN_UMFPACK] = call_directsolver(solver, A, b, refX); 
    printStatItem(stat, EIGEN_UMFPACK, best_time_id, best_time_val); 
  }
  #endif
    //SuperLU
  #ifdef EIGEN_SUPERLU_SUPPORT
  {
    cout << "\nSolving with SUPERLU ... \n"; 
    SuperLU<SpMat> solver;
    stat[EIGEN_SUPERLU] = call_directsolver(solver, A, b, refX); 
    printStatItem(stat, EIGEN_SUPERLU, best_time_id, best_time_val); 
  }
  #endif
    
   // PaStix LU
  #ifdef EIGEN_PASTIX_SUPPORT
  {
    cout << "\nSolving with PASTIX LU ... \n"; 
    PastixLU<SpMat> solver; 
    stat[EIGEN_PASTIX] = call_directsolver(solver, A, b, refX) ;
    printStatItem(stat, EIGEN_PASTIX, best_time_id, best_time_val); 
  }
  #endif

   //PARDISO LU
  #ifdef EIGEN_PARDISO_SUPPORT
  {
    cout << "\nSolving with PARDISO LU ... \n"; 
    PardisoLU<SpMat>  solver; 
    stat[EIGEN_PARDISO] = call_directsolver(solver, A, b, refX);
    printStatItem(stat, EIGEN_PARDISO, best_time_id, best_time_val); 
  }
  #endif


  
  //BiCGSTAB
  {
    cout << "\nSolving with BiCGSTAB ... \n"; 
    BiCGSTAB<SpMat> solver; 
    stat[EIGEN_BICGSTAB] = call_itersolver(solver, A, b, refX);
    stat[EIGEN_BICGSTAB].isIterative = 1;
    printStatItem(stat, EIGEN_BICGSTAB, best_time_id, best_time_val); 
  }
  //BiCGSTAB+ILUT
  {
    cout << "\nSolving with BiCGSTAB and ILUT ... \n"; 
    BiCGSTAB<SpMat, IncompleteLUT<Scalar> > solver; 
    stat[EIGEN_BICGSTAB_ILUT] = call_itersolver(solver, A, b, refX);
    stat[EIGEN_BICGSTAB_ILUT].isIterative = 1;
    printStatItem(stat, EIGEN_BICGSTAB_ILUT, best_time_id, best_time_val); 
  }
  
   
  //GMRES
//   {
//     cout << "\nSolving with GMRES ... \n"; 
//     GMRES<SpMat> solver; 
//     stat[EIGEN_GMRES] = call_itersolver(solver, A, b, refX);
//     stat[EIGEN_GMRES].isIterative = 1;
//     printStatItem(stat, EIGEN_GMRES, best_time_id, best_time_val); 
//   }
  //GMRES+ILUT
  {
    cout << "\nSolving with GMRES and ILUT ... \n"; 
    GMRES<SpMat, IncompleteLUT<Scalar> > solver; 
    stat[EIGEN_GMRES_ILUT] = call_itersolver(solver, A, b, refX);
    stat[EIGEN_GMRES_ILUT].isIterative = 1;
    printStatItem(stat, EIGEN_GMRES_ILUT, best_time_id, best_time_val); 
  }
  
  // Hermitian and not necessarily positive-definites
  if (sym != NonSymmetric)
  {
    // Internal Cholesky
    {
      cout << "\nSolving with Simplicial LDLT ... \n"; 
      SimplicialLDLT<SpMat, Lower> solver;
      stat[EIGEN_SIMPLICIAL_LDLT] = call_directsolver(solver, A, b, refX); 
      printStatItem(stat, EIGEN_SIMPLICIAL_LDLT, best_time_id, best_time_val); 
    }
    
    // CHOLMOD
    #ifdef EIGEN_CHOLMOD_SUPPORT
    {
      cout << "\nSolving with CHOLMOD LDLT ... \n"; 
      CholmodDecomposition<SpMat, Lower> solver;
      solver.setMode(CholmodLDLt);
      stat[EIGEN_CHOLMOD_LDLT] =  call_directsolver(solver, A, b, refX);
      printStatItem(stat,EIGEN_CHOLMOD_LDLT, best_time_id, best_time_val); 
    }
    #endif
    
    //PASTIX LLT
    #ifdef EIGEN_PASTIX_SUPPORT
    {
      cout << "\nSolving with PASTIX LDLT ... \n"; 
      PastixLDLT<SpMat, Lower> solver; 
      stat[EIGEN_PASTIX_LDLT] = call_directsolver(solver, A, b, refX);
      printStatItem(stat,EIGEN_PASTIX_LDLT, best_time_id, best_time_val); 
    }
    #endif
    
    //PARDISO LLT
    #ifdef EIGEN_PARDISO_SUPPORT
    {
      cout << "\nSolving with PARDISO LDLT ... \n"; 
      PardisoLDLT<SpMat, Lower> solver; 
      stat[EIGEN_PARDISO_LDLT] = call_directsolver(solver, A, b, refX); 
      printStatItem(stat,EIGEN_PARDISO_LDLT, best_time_id, best_time_val); 
    }
    #endif
  }

   // Now, symmetric POSITIVE DEFINITE matrices
  if (sym == SPD)
  {
    
    //Internal Sparse Cholesky
    {
      cout << "\nSolving with SIMPLICIAL LLT ... \n"; 
      SimplicialLLT<SpMat, Lower> solver; 
      stat[EIGEN_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX); 
      printStatItem(stat,EIGEN_SIMPLICIAL_LLT, best_time_id, best_time_val); 
    }
    
    // CHOLMOD
    #ifdef EIGEN_CHOLMOD_SUPPORT
    {
      // CholMOD SuperNodal LLT
      cout << "\nSolving with CHOLMOD LLT (Supernodal)... \n"; 
      CholmodDecomposition<SpMat, Lower> solver;
      solver.setMode(CholmodSupernodalLLt);
      stat[EIGEN_CHOLMOD_SUPERNODAL_LLT] = call_directsolver(solver, A, b, refX);
      printStatItem(stat,EIGEN_CHOLMOD_SUPERNODAL_LLT, best_time_id, best_time_val); 
      // CholMod Simplicial LLT
      cout << "\nSolving with CHOLMOD LLT (Simplicial) ... \n"; 
      solver.setMode(CholmodSimplicialLLt);
      stat[EIGEN_CHOLMOD_SIMPLICIAL_LLT] = call_directsolver(solver, A, b, refX);
      printStatItem(stat,EIGEN_CHOLMOD_SIMPLICIAL_LLT, best_time_id, best_time_val); 
    }
    #endif
    
    //PASTIX LLT
    #ifdef EIGEN_PASTIX_SUPPORT
    {
      cout << "\nSolving with PASTIX LLT ... \n"; 
      PastixLLT<SpMat, Lower> solver; 
      stat[EIGEN_PASTIX_LLT] =  call_directsolver(solver, A, b, refX);
      printStatItem(stat,EIGEN_PASTIX_LLT, best_time_id, best_time_val); 
    }
    #endif
    
    //PARDISO LLT
    #ifdef EIGEN_PARDISO_SUPPORT
    {
      cout << "\nSolving with PARDISO LLT ... \n"; 
      PardisoLLT<SpMat, Lower> solver; 
      stat[EIGEN_PARDISO_LLT] = call_directsolver(solver, A, b, refX);
      printStatItem(stat,EIGEN_PARDISO_LLT, best_time_id, best_time_val); 
    }
    #endif
    
    // Internal CG
    {
      cout << "\nSolving with CG ... \n"; 
      ConjugateGradient<SpMat, Lower> solver; 
      stat[EIGEN_CG] = call_itersolver(solver, A, b, refX);
      stat[EIGEN_CG].isIterative = 1;
      printStatItem(stat,EIGEN_CG, best_time_id, best_time_val); 
    }
    //CG+IdentityPreconditioner
//     {
//       cout << "\nSolving with CG and IdentityPreconditioner ... \n"; 
//       ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver; 
//       stat[EIGEN_CG_PRECOND] = call_itersolver(solver, A, b, refX);
//       stat[EIGEN_CG_PRECOND].isIterative = 1;
//       printStatItem(stat,EIGEN_CG_PRECOND, best_time_id, best_time_val); 
//     }
  } // End SPD matrices 
  
  return best_time_id;
}

/* Browse all the matrices available in the specified folder 
 * and solve the associated linear system.
 * The results of each solve are printed in the standard output
 * and optionally in the provided html file
 */
template <typename Scalar>
void Browse_Matrices(const string folder, bool statFileExists, std::string& statFile, int maxiters, double tol)
{
  MaximumIters = maxiters; // Maximum number of iterations, global variable 
  RelErr = tol;  //Relative residual error  as stopping criterion for iterative solvers
  MatrixMarketIterator<Scalar> it(folder);
  Stats stat[EIGEN_ALL_SOLVERS];
  for ( ; it; ++it)
  {    
    for (int i = 0; i < EIGEN_ALL_SOLVERS; i++)
    {
      stat[i].isavail = 0;
      stat[i].isIterative = 0;
    }
    
    int best_time_id;
    cout<< "\n\n===================================================== \n";
    cout<< " ======  SOLVING WITH MATRIX " << it.matname() << " ====\n";
    cout<< " =================================================== \n\n";
    Matrix<Scalar, Dynamic, 1> refX;
    if(it.hasrefX()) refX = it.refX();
    best_time_id = SelectSolvers<Scalar>(it.matrix(), it.sym(), it.rhs(), refX, &stat[0]);
    
    if(statFileExists)
    {
      string statline;
      printHtmlStatLine(&stat[0], best_time_id, statline); 
      std::ofstream statbuf(statFile.c_str(), std::ios::app);
      statbuf << "<TR><TH rowspan=\"4\">" << it.matname() << " <TD rowspan=\"4\"> "
      << it.matrix().rows() << " <TD rowspan=\"4\"> " << it.matrix().nonZeros()<< " "<< statline ;
      statbuf.close();
    }
  } 
} 

bool get_options(int argc, char **args, string option, string* value=0)
{
  int idx = 1, found=false; 
  while (idx<argc && !found){
    if (option.compare(args[idx]) == 0){
      found = true; 
      if(value) *value = args[idx+1];
    }
    idx+=2;
  }
  return found; 
}