aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/btl/libs/eigen2/eigen2_LU_solve_interface.hh
blob: dcb9f567feb098552c8090722769ffafee67d32d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//=====================================================
// File   :  blitz_LU_solve_interface.hh
// Author :  L. Plagne <laurent.plagne@edf.fr)>        
// Copyright (C) EDF R&D,  lun sep 30 14:23:31 CEST 2002
//=====================================================
// 
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
// 
#ifndef BLITZ_LU_SOLVE_INTERFACE_HH
#define BLITZ_LU_SOLVE_INTERFACE_HH

#include "blitz/array.h"
#include <vector>

BZ_USING_NAMESPACE(blitz)

template<class real>
class blitz_LU_solve_interface : public blitz_interface<real>
{

public :

  typedef typename blitz_interface<real>::gene_matrix gene_matrix;
  typedef typename blitz_interface<real>::gene_vector gene_vector;

  typedef blitz::Array<int,1> Pivot_Vector;

  inline static void new_Pivot_Vector(Pivot_Vector & pivot,int N)
  {

    pivot.resize(N);

  }

  inline static void free_Pivot_Vector(Pivot_Vector & pivot)
  {
    
    return;

  }


  static inline real matrix_vector_product_sliced(const gene_matrix & A, gene_vector B, int row, int col_start, int col_end)
  {
    
    real somme=0.;
    
    for (int j=col_start ; j<col_end+1 ; j++){
	
	somme+=A(row,j)*B(j);
	
    }

    return somme;

  }




  static inline real matrix_matrix_product_sliced(gene_matrix & A, int row, int col_start, int col_end, gene_matrix & B, int row_shift, int col )
  {
    
    real somme=0.;
    
    for (int j=col_start ; j<col_end+1 ; j++){
	
	somme+=A(row,j)*B(j+row_shift,col);
	
    }

    return somme;

  }

  inline static void LU_factor(gene_matrix & LU, Pivot_Vector & pivot, int N)
  {

    ASSERT( LU.rows()==LU.cols() ) ;
    int index_max = 0 ;
    real big = 0. ;
    real theSum = 0. ;
    real dum = 0. ;
    // Get the implicit scaling information :
    gene_vector ImplicitScaling( N ) ;
    for( int i=0; i<N; i++ ) {
      big = 0. ;
      for( int j=0; j<N; j++ ) {
	if( abs( LU( i, j ) )>=big ) big = abs( LU( i, j ) ) ;
      }
      if( big==0. ) {
	INFOS( "blitz_LU_factor::Singular matrix" ) ;
	exit( 0 ) ;
      }
      ImplicitScaling( i ) = 1./big ;
    }
    // Loop over columns of Crout's method :
    for( int j=0; j<N; j++ ) {
      for( int i=0; i<j; i++ ) {
	theSum = LU( i, j ) ;
	theSum -= matrix_matrix_product_sliced(LU, i, 0, i-1, LU, 0, j) ;
	//	theSum -= sum( LU( i, Range( fromStart, i-1 ) )*LU( Range( fromStart, i-1 ), j ) ) ;
	LU( i, j ) = theSum ;
      }
      
      // Search for the largest pivot element :
      big = 0. ;
      for( int i=j; i<N; i++ ) {
	theSum = LU( i, j ) ;
	theSum -= matrix_matrix_product_sliced(LU, i, 0, j-1, LU, 0, j) ;
	//	theSum -= sum( LU( i, Range( fromStart, j-1 ) )*LU( Range( fromStart, j-1 ), j ) ) ;
	LU( i, j ) = theSum ;
	if( (ImplicitScaling( i )*abs( theSum ))>=big ) {
	  dum = ImplicitScaling( i )*abs( theSum ) ;
	  big = dum ;
	  index_max = i ;
	}
      }
      // Interchanging rows and the scale factor :
      if( j!=index_max ) {
	for( int k=0; k<N; k++ ) {
	  dum = LU( index_max, k ) ;
	  LU( index_max, k ) = LU( j, k ) ;
	  LU( j, k ) = dum ;
	}
	ImplicitScaling( index_max ) = ImplicitScaling( j ) ;
      }
      pivot( j ) = index_max ;
      if ( LU( j, j )==0. ) LU( j, j ) = 1.e-20 ;
      // Divide by the pivot element :
      if( j<N ) {
	dum = 1./LU( j, j ) ;
	for( int i=j+1; i<N; i++ ) LU( i, j ) *= dum ;
      }
    }

  }

  inline static void LU_solve(const gene_matrix & LU, const Pivot_Vector pivot, gene_vector &B, gene_vector X, int N)
  {

    // Pour conserver le meme header, on travaille sur X, copie du second-membre B
    X = B.copy() ;
    ASSERT( LU.rows()==LU.cols() ) ;
    firstIndex indI ;
    // Forward substitution :
    int ii = 0 ;
    real theSum = 0. ;
    for( int i=0; i<N; i++ ) {
      int ip = pivot( i ) ;
      theSum = X( ip ) ;
      //      theSum = B( ip ) ;
      X( ip ) = X( i ) ;
      //      B( ip ) = B( i ) ;
      if( ii ) {
	theSum -= matrix_vector_product_sliced(LU, X, i, ii-1, i-1) ;
	//	theSum -= sum( LU( i, Range( ii-1, i-1 ) )*X( Range( ii-1, i-1 ) ) ) ;
	//	theSum -= sum( LU( i, Range( ii-1, i-1 ) )*B( Range( ii-1, i-1 ) ) ) ;
      } else if( theSum ) {
	ii = i+1 ;
      }
      X( i ) = theSum ;
      //      B( i ) = theSum ;
    }
    // Backsubstitution :
    for( int i=N-1; i>=0; i-- ) {
      theSum = X( i ) ;
      //      theSum = B( i ) ;
      theSum -= matrix_vector_product_sliced(LU, X, i, i+1, N) ;
      //      theSum -= sum( LU( i, Range( i+1, toEnd ) )*X( Range( i+1, toEnd ) ) ) ;
      //      theSum -= sum( LU( i, Range( i+1, toEnd ) )*B( Range( i+1, toEnd ) ) ) ;
      // Store a component of the solution vector :
      X( i ) = theSum/LU( i, i ) ;
      //      B( i ) = theSum/LU( i, i ) ;
    }

  }

};

#endif