aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/benchmark-blocking-sizes.cpp
blob: 827be2880294bfa395a20b51f151d0d8387655eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Benoit Jacob <benoitjacob@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <iostream>
#include <cstdint>
#include <cstdlib>
#include <vector>
#include <fstream>
#include <memory>
#include <cstdio>

bool eigen_use_specific_block_size;
int eigen_block_size_k, eigen_block_size_m, eigen_block_size_n;
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZES eigen_use_specific_block_size
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K eigen_block_size_k
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M eigen_block_size_m
#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N eigen_block_size_n
#include <Eigen/Core>

#include <bench/BenchTimer.h>

using namespace Eigen;
using namespace std;

static BenchTimer timer;

// how many times we repeat each measurement.
// measurements are randomly shuffled - we're not doing
// all N identical measurements in a row.
const int measurement_repetitions = 3;

// Timings below this value are too short to be accurate,
// we'll repeat measurements with more iterations until
// we get a timing above that threshold.
const float min_accurate_time = 1e-2f;

// See --min-working-set-size command line parameter.
size_t min_working_set_size = 0;

float max_clock_speed = 0.0f;

// range of sizes that we will benchmark (in all 3 K,M,N dimensions)
const size_t maxsize = 2048;
const size_t minsize = 16;

typedef MatrixXf MatrixType;
typedef MatrixType::Scalar Scalar;
typedef internal::packet_traits<Scalar>::type Packet;

static_assert((maxsize & (maxsize - 1)) == 0, "maxsize must be a power of two");
static_assert((minsize & (minsize - 1)) == 0, "minsize must be a power of two");
static_assert(maxsize > minsize, "maxsize must be larger than minsize");
static_assert(maxsize < (minsize << 16), "maxsize must be less than (minsize<<16)");

// just a helper to store a triple of K,M,N sizes for matrix product
struct size_triple_t
{
  size_t k, m, n;
  size_triple_t() : k(0), m(0), n(0) {}
  size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {}
  size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {}
  size_triple_t(uint16_t compact)
  {
    k = 1 << ((compact & 0xf00) >> 8);
    m = 1 << ((compact & 0x0f0) >> 4);
    n = 1 << ((compact & 0x00f) >> 0);
  }
};

uint8_t log2_pot(size_t x) {
  size_t l = 0;
  while (x >>= 1) l++;
  return l;
}

// Convert between size tripes and a compact form fitting in 12 bits
// where each size, which must be a POT, is encoded as its log2, on 4 bits
// so the largest representable size is 2^15 == 32k  ... big enough.
uint16_t compact_size_triple(size_t k, size_t m, size_t n)
{
  return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n);
}

uint16_t compact_size_triple(const size_triple_t& t)
{
  return compact_size_triple(t.k, t.m, t.n);
}

// A single benchmark. Initially only contains benchmark params.
// Then call run(), which stores the result in the gflops field.
struct benchmark_t
{
  uint16_t compact_product_size;
  uint16_t compact_block_size;
  bool use_default_block_size;
  float gflops;
  benchmark_t()
    : compact_product_size(0)
    , compact_block_size(0)
    , use_default_block_size(false)
    , gflops(0)
  {
  }
  benchmark_t(size_t pk, size_t pm, size_t pn,
              size_t bk, size_t bm, size_t bn)
    : compact_product_size(compact_size_triple(pk, pm, pn))
    , compact_block_size(compact_size_triple(bk, bm, bn))
    , use_default_block_size(false)
    , gflops(0)
  {}
  benchmark_t(size_t pk, size_t pm, size_t pn)
    : compact_product_size(compact_size_triple(pk, pm, pn))
    , compact_block_size(0)
    , use_default_block_size(true)
    , gflops(0)
  {}

  void run();
};

ostream& operator<<(ostream& s, const benchmark_t& b)
{
  s << hex << b.compact_product_size << dec;
  if (b.use_default_block_size) {
    size_triple_t t(b.compact_product_size);
    Index k = t.k, m = t.m, n = t.n;
    internal::computeProductBlockingSizes<Scalar, Scalar>(k, m, n);
    s << " default(" << k << ", " << m << ", " << n << ")";
  } else {
    s << " " << hex << b.compact_block_size << dec;
  }
  s << " " << b.gflops;
  return s;
}

// We sort first by increasing benchmark parameters,
// then by decreasing performance.
bool operator<(const benchmark_t& b1, const benchmark_t& b2)
{ 
  return b1.compact_product_size < b2.compact_product_size ||
           (b1.compact_product_size == b2.compact_product_size && (
             (b1.compact_block_size < b2.compact_block_size || (
               b1.compact_block_size == b2.compact_block_size &&
                 b1.gflops > b2.gflops))));
}

void benchmark_t::run()
{
  size_triple_t productsizes(compact_product_size);

  if (use_default_block_size) {
    eigen_use_specific_block_size = false;
  } else {
    // feed eigen with our custom blocking params
    eigen_use_specific_block_size = true;
    size_triple_t blocksizes(compact_block_size);
    eigen_block_size_k = blocksizes.k;
    eigen_block_size_m = blocksizes.m;
    eigen_block_size_n = blocksizes.n;
  }

  // set up the matrix pool

  const size_t combined_three_matrices_sizes =
    sizeof(Scalar) *
      (productsizes.k * productsizes.m +
       productsizes.k * productsizes.n +
       productsizes.m * productsizes.n);

  // 64 M is large enough that nobody has a cache bigger than that,
  // while still being small enough that everybody has this much RAM,
  // so conveniently we don't need to special-case platforms here.
  const size_t unlikely_large_cache_size = 64 << 20;

  const size_t working_set_size =
    min_working_set_size ? min_working_set_size : unlikely_large_cache_size;

  const size_t matrix_pool_size =
    1 + working_set_size / combined_three_matrices_sizes;

  MatrixType *lhs = new MatrixType[matrix_pool_size];
  MatrixType *rhs = new MatrixType[matrix_pool_size];
  MatrixType *dst = new MatrixType[matrix_pool_size];
  
  for (size_t i = 0; i < matrix_pool_size; i++) {
    lhs[i] = MatrixType::Zero(productsizes.m, productsizes.k);
    rhs[i] = MatrixType::Zero(productsizes.k, productsizes.n);
    dst[i] = MatrixType::Zero(productsizes.m, productsizes.n);
  }

  // main benchmark loop

  int iters_at_a_time = 1;
  float time_per_iter = 0.0f;
  size_t matrix_index = 0;
  while (true) {

    double starttime = timer.getCpuTime();
    for (int i = 0; i < iters_at_a_time; i++) {
      dst[matrix_index].noalias() = lhs[matrix_index] * rhs[matrix_index];
      matrix_index++;
      if (matrix_index == matrix_pool_size) {
        matrix_index = 0;
      }
    }
    double endtime = timer.getCpuTime();

    const float timing = float(endtime - starttime);

    if (timing >= min_accurate_time) {
      time_per_iter = timing / iters_at_a_time;
      break;
    }

    iters_at_a_time *= 2;
  }

  delete[] lhs;
  delete[] rhs;
  delete[] dst;

  gflops = 2e-9 * productsizes.k * productsizes.m * productsizes.n / time_per_iter;
}

void print_cpuinfo()
{
#ifdef __linux__
  cout << "contents of /proc/cpuinfo:" << endl;
  string line;
  ifstream cpuinfo("/proc/cpuinfo");
  if (cpuinfo.is_open()) {
    while (getline(cpuinfo, line)) {
      cout << line << endl;
    }
    cpuinfo.close();
  }
  cout << endl;
#elif defined __APPLE__
  cout << "output of sysctl hw:" << endl;
  system("sysctl hw");
  cout << endl;
#endif
}

template <typename T>
string type_name()
{
  return "unknown";
}

template<>
string type_name<float>()
{
  return "float";
}

template<>
string type_name<double>()
{
  return "double";
}

struct action_t
{
  virtual const char* invokation_name() const { abort(); return nullptr; }
  virtual void run() const { abort(); }
  virtual ~action_t() {}
};

void show_usage_and_exit(int /*argc*/, char* argv[],
                         const vector<unique_ptr<action_t>>& available_actions)
{
  cerr << "usage: " << argv[0] << " <action> [options...]" << endl << endl;
  cerr << "available actions:" << endl << endl;
  for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
    cerr << "  " << (*it)->invokation_name() << endl;
  }
  cerr << endl;
  cerr << "options:" << endl << endl;
  cerr << "  --min-working-set-size=N:" << endl;
  cerr << "       Set the minimum working set size to N bytes." << endl;
  cerr << "       This is rounded up as needed to a multiple of matrix size." << endl;
  cerr << "       A larger working set lowers the chance of a warm cache." << endl;
  cerr << "       The default value 0 means use a large enough working" << endl;
  cerr << "       set to likely outsize caches." << endl;
  cerr << "       A value of 1 (that is, 1 byte) would mean don't do anything to" << endl;
  cerr << "       avoid warm caches." << endl;
  exit(1);
}
     
float measure_clock_speed()
{
  cerr << "Measuring clock speed...                              \r" << flush;
          
  vector<float> all_gflops;
  for (int i = 0; i < 8; i++) {
    benchmark_t b(1024, 1024, 1024);
    b.run();
    all_gflops.push_back(b.gflops);
  }

  sort(all_gflops.begin(), all_gflops.end());
  float stable_estimate = all_gflops[2] + all_gflops[3] + all_gflops[4] + all_gflops[5];

  // multiply by an arbitrary constant to discourage trying doing anything with the
  // returned values besides just comparing them with each other.
  float result = stable_estimate * 123.456f;

  return result;
}

struct human_duration_t
{
  int seconds;
  human_duration_t(int s) : seconds(s) {}
};

ostream& operator<<(ostream& s, const human_duration_t& d)
{
  int remainder = d.seconds;
  if (remainder > 3600) {
    int hours = remainder / 3600;
    s << hours << " h ";
    remainder -= hours * 3600;
  }
  if (remainder > 60) {
    int minutes = remainder / 60;
    s << minutes << " min ";
    remainder -= minutes * 60;
  }
  if (d.seconds < 600) {
    s << remainder << " s";
  }
  return s;
}

const char session_filename[] = "/data/local/tmp/benchmark-blocking-sizes-session.data";

void serialize_benchmarks(const char* filename, const vector<benchmark_t>& benchmarks, size_t first_benchmark_to_run)
{
  FILE* file = fopen(filename, "w");
  if (!file) {
    cerr << "Could not open file " << filename << " for writing." << endl;
    cerr << "Do you have write permissions on the current working directory?" << endl;
    exit(1);
  }
  size_t benchmarks_vector_size = benchmarks.size();
  fwrite(&max_clock_speed, sizeof(max_clock_speed), 1, file);
  fwrite(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file);
  fwrite(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file);
  fwrite(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file);
  fclose(file);
}

bool deserialize_benchmarks(const char* filename, vector<benchmark_t>& benchmarks, size_t& first_benchmark_to_run)
{
  FILE* file = fopen(filename, "r");
  if (!file) {
    return false;
  }
  if (1 != fread(&max_clock_speed, sizeof(max_clock_speed), 1, file)) {
    return false;
  }
  size_t benchmarks_vector_size = 0;
  if (1 != fread(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file)) {
    return false;
  }
  if (1 != fread(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file)) {
    return false;
  }
  benchmarks.resize(benchmarks_vector_size);
  if (benchmarks.size() != fread(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file)) {
    return false;
  }
  unlink(filename);
  return true;
}

void try_run_some_benchmarks(
  vector<benchmark_t>& benchmarks,
  double time_start,
  size_t& first_benchmark_to_run)
{
  if (first_benchmark_to_run == benchmarks.size()) {
    return;
  }

  double time_last_progress_update = 0;
  double time_last_clock_speed_measurement = 0;
  double time_now = 0;

  size_t benchmark_index = first_benchmark_to_run;

  while (true) {
    float ratio_done = float(benchmark_index) / benchmarks.size();
    time_now = timer.getRealTime();

    // We check clock speed every minute and at the end.
    if (benchmark_index == benchmarks.size() ||
        time_now > time_last_clock_speed_measurement + 60.0f)
    {
      time_last_clock_speed_measurement = time_now;

      // Ensure that clock speed is as expected
      float current_clock_speed = measure_clock_speed();

      // The tolerance needs to be smaller than the relative difference between
      // clock speeds that a device could operate under.
      // It seems unlikely that a device would be throttling clock speeds by
      // amounts smaller than 2%.
      // With a value of 1%, I was getting within noise on a Sandy Bridge.
      const float clock_speed_tolerance = 0.02f;

      if (current_clock_speed > (1 + clock_speed_tolerance) * max_clock_speed) {
        // Clock speed is now higher than we previously measured.
        // Either our initial measurement was inaccurate, which won't happen
        // too many times as we are keeping the best clock speed value and
        // and allowing some tolerance; or something really weird happened,
        // which invalidates all benchmark results collected so far.
        // Either way, we better restart all over again now.
        if (benchmark_index) {
          cerr << "Restarting at " << 100.0f * ratio_done
               << " % because clock speed increased.          " << endl;
        }
        max_clock_speed = current_clock_speed;
        first_benchmark_to_run = 0;
        return;
      }

      bool rerun_last_tests = false;

      if (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
        cerr << "Measurements completed so far: "
             << 100.0f * ratio_done
             << " %                             " << endl;
        cerr << "Clock speed seems to be only "
             << current_clock_speed/max_clock_speed
             << " times what it used to be." << endl;

        unsigned int seconds_to_sleep_if_lower_clock_speed = 1;

        while (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
          if (seconds_to_sleep_if_lower_clock_speed > 32) {
            cerr << "Sleeping longer probably won't make a difference." << endl;
            cerr << "Serializing benchmarks to " << session_filename << endl;
            serialize_benchmarks(session_filename, benchmarks, first_benchmark_to_run);
            cerr << "Now restart this benchmark, and it should pick up where we left." << endl;
            exit(2);
          }
          rerun_last_tests = true;
          cerr << "Sleeping "
               << seconds_to_sleep_if_lower_clock_speed
               << " s...                                   \r" << endl;
          sleep(seconds_to_sleep_if_lower_clock_speed);
          current_clock_speed = measure_clock_speed();
          seconds_to_sleep_if_lower_clock_speed *= 2;
        }
      }

      if (rerun_last_tests) {
        cerr << "Redoing the last "
             << 100.0f * float(benchmark_index - first_benchmark_to_run) / benchmarks.size()
             << " % because clock speed had been low.   " << endl;
        return;
      }

      // nothing wrong with the clock speed so far, so there won't be a need to rerun
      // benchmarks run so far in case we later encounter a lower clock speed.
      first_benchmark_to_run = benchmark_index;
    }

    if (benchmark_index == benchmarks.size()) {
      // We're done!
      first_benchmark_to_run = benchmarks.size();
      // Erase progress info
      cerr << "                                                            " << endl;
      return;
    }

    // Display progress info on stderr
    if (time_now > time_last_progress_update + 1.0f) {
      time_last_progress_update = time_now;
      cerr << "Measurements... " << 100.0f * ratio_done
           << " %, ETA "
           << human_duration_t(float(time_now - time_start) * (1.0f - ratio_done) / ratio_done)
           << "                          \r" << flush;
    }

    // This is where we actually run a benchmark!
    benchmarks[benchmark_index].run();
    benchmark_index++;
  }
}

void run_benchmarks(vector<benchmark_t>& benchmarks)
{
  size_t first_benchmark_to_run;
  vector<benchmark_t> deserialized_benchmarks;
  bool use_deserialized_benchmarks = false;
  if (deserialize_benchmarks(session_filename, deserialized_benchmarks, first_benchmark_to_run)) {
    cerr << "Found serialized session with "
         << 100.0f * first_benchmark_to_run / deserialized_benchmarks.size()
         << " % already done" << endl;
    if (deserialized_benchmarks.size() == benchmarks.size() &&
        first_benchmark_to_run > 0 &&
        first_benchmark_to_run < benchmarks.size())
    {
      use_deserialized_benchmarks = true;
    }
  }

  if (use_deserialized_benchmarks) {
    benchmarks = deserialized_benchmarks;
  } else {
    // not using deserialized benchmarks, starting from scratch
    first_benchmark_to_run = 0;

    // Randomly shuffling benchmarks allows us to get accurate enough progress info,
    // as now the cheap/expensive benchmarks are randomly mixed so they average out.
    // It also means that if data is corrupted for some time span, the odds are that
    // not all repetitions of a given benchmark will be corrupted.
    random_shuffle(benchmarks.begin(), benchmarks.end());
  }

  for (int i = 0; i < 4; i++) {
    max_clock_speed = max(max_clock_speed, measure_clock_speed());
  }
  
  double time_start = 0.0;
  while (first_benchmark_to_run < benchmarks.size()) {
    if (first_benchmark_to_run == 0) {
      time_start = timer.getRealTime();
    }
    try_run_some_benchmarks(benchmarks,
                            time_start,
                            first_benchmark_to_run);
  }

  // Sort timings by increasing benchmark parameters, and decreasing gflops.
  // The latter is very important. It means that we can ignore all but the first
  // benchmark with given parameters.
  sort(benchmarks.begin(), benchmarks.end());

  // Collect best (i.e. now first) results for each parameter values.
  vector<benchmark_t> best_benchmarks;
  for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
    if (best_benchmarks.empty() ||
        best_benchmarks.back().compact_product_size != it->compact_product_size ||
        best_benchmarks.back().compact_block_size != it->compact_block_size)
    {
      best_benchmarks.push_back(*it);
    }
  }

  // keep and return only the best benchmarks
  benchmarks = best_benchmarks;
}

struct measure_all_pot_sizes_action_t : action_t
{
  virtual const char* invokation_name() const { return "all-pot-sizes"; }
  virtual void run() const
  {
    vector<benchmark_t> benchmarks;
    for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
      for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
        for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
          for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
            for (size_t kblock = minsize; kblock <= ksize; kblock *= 2) {
              for (size_t mblock = minsize; mblock <= msize; mblock *= 2) {
                for (size_t nblock = minsize; nblock <= nsize; nblock *= 2) {
                  benchmarks.emplace_back(ksize, msize, nsize, kblock, mblock, nblock);
                }
              }
            }
          }
        }
      }
    }

    run_benchmarks(benchmarks);

    cout << "BEGIN MEASUREMENTS ALL POT SIZES" << endl;
    for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
      cout << *it << endl;
    }
  }
};

struct measure_default_sizes_action_t : action_t
{
  virtual const char* invokation_name() const { return "default-sizes"; }
  virtual void run() const
  {
    vector<benchmark_t> benchmarks;
    for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
      for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
        for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
          for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
            benchmarks.emplace_back(ksize, msize, nsize);
          }
        }
      }
    }

    run_benchmarks(benchmarks);

    cout << "BEGIN MEASUREMENTS DEFAULT SIZES" << endl;
    for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
      cout << *it << endl;
    }
  }
};

int main(int argc, char* argv[])
{
  double time_start = timer.getRealTime();
  cout.precision(4);
  cerr.precision(4);

  vector<unique_ptr<action_t>> available_actions;
  available_actions.emplace_back(new measure_all_pot_sizes_action_t);
  available_actions.emplace_back(new measure_default_sizes_action_t);

  auto action = available_actions.end();

  if (argc <= 1) {
    show_usage_and_exit(argc, argv, available_actions);
  }
  for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
    if (!strcmp(argv[1], (*it)->invokation_name())) {
      action = it;
      break;
    }
  }

  if (action == available_actions.end()) {
    show_usage_and_exit(argc, argv, available_actions);
  }

  for (int i = 2; i < argc; i++) {
    if (argv[i] == strstr(argv[i], "--min-working-set-size=")) {
      const char* equals_sign = strchr(argv[i], '=');
      min_working_set_size = strtoul(equals_sign+1, nullptr, 10);
    } else {
      cerr << "unrecognized option: " << argv[i] << endl << endl;
      show_usage_and_exit(argc, argv, available_actions);
    }
  }

  print_cpuinfo();

  cout << "benchmark parameters:" << endl;
  cout << "pointer size: " << 8*sizeof(void*) << " bits" << endl;
  cout << "scalar type: " << type_name<Scalar>() << endl;
  cout << "packet size: " << internal::packet_traits<MatrixType::Scalar>::size << endl;
  cout << "minsize = " << minsize << endl;
  cout << "maxsize = " << maxsize << endl;
  cout << "measurement_repetitions = " << measurement_repetitions << endl;
  cout << "min_accurate_time = " << min_accurate_time << endl;
  cout << "min_working_set_size = " << min_working_set_size;
  if (min_working_set_size == 0) {
    cout << " (try to outsize caches)";
  }
  cout << endl << endl;

  (*action)->run();

  double time_end = timer.getRealTime();
  cerr << "Finished in " << human_duration_t(time_end - time_start) << endl;
}