1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
#include <iostream>
#include <Eigen/Core>
#include <bench/BenchUtil.h>
using namespace Eigen;
#ifndef REPEAT
#define REPEAT 100000
#endif
#ifndef TRIES
#define TRIES 20
#endif
typedef double Scalar;
template <typename MatrixType>
__attribute__ ((noinline)) void bench_reverse(const MatrixType& m)
{
int rows = m.rows();
int cols = m.cols();
int size = m.size();
int repeats = (REPEAT*1000)/size;
MatrixType a = MatrixType::Random(rows,cols);
MatrixType b = MatrixType::Random(rows,cols);
BenchTimer timerB, timerH, timerV;
Scalar acc = 0;
int r = internal::random<int>(0,rows-1);
int c = internal::random<int>(0,cols-1);
for (int t=0; t<TRIES; ++t)
{
timerB.start();
for (int k=0; k<repeats; ++k)
{
asm("#begin foo");
b = a.reverse();
asm("#end foo");
acc += b.coeff(r,c);
}
timerB.stop();
}
if (MatrixType::RowsAtCompileTime==Dynamic)
std::cout << "dyn ";
else
std::cout << "fixed ";
std::cout << rows << " x " << cols << " \t"
<< (timerB.value() * REPEAT) / repeats << "s "
<< "(" << 1e-6 * size*repeats/timerB.value() << " MFLOPS)\t";
std::cout << "\n";
// make sure the compiler does not optimize too much
if (acc==123)
std::cout << acc;
}
int main(int argc, char* argv[])
{
const int dynsizes[] = {4,6,8,16,24,32,49,64,128,256,512,900,0};
std::cout << "size no sqrt standard";
// #ifdef BENCH_GSL
// std::cout << " GSL (standard + double + ATLAS) ";
// #endif
std::cout << "\n";
for (uint i=0; dynsizes[i]>0; ++i)
{
bench_reverse(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i]));
bench_reverse(Matrix<Scalar,Dynamic,1>(dynsizes[i]*dynsizes[i]));
}
// bench_reverse(Matrix<Scalar,2,2>());
// bench_reverse(Matrix<Scalar,3,3>());
// bench_reverse(Matrix<Scalar,4,4>());
// bench_reverse(Matrix<Scalar,5,5>());
// bench_reverse(Matrix<Scalar,6,6>());
// bench_reverse(Matrix<Scalar,7,7>());
// bench_reverse(Matrix<Scalar,8,8>());
// bench_reverse(Matrix<Scalar,12,12>());
// bench_reverse(Matrix<Scalar,16,16>());
return 0;
}
|