aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/analyze-blocking-sizes.cpp
blob: f507eab381e635eaee8d99a4590c5fcb0d03e3cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
#include <iostream>
#include <cstdint>
#include <cstdlib>
#include <vector>
#include <algorithm>
#include <fstream>
#include <string>
#include <cmath>
#include <cassert>
#include <cstring>
#include <memory>

#include <Eigen/Core>

using namespace std;

struct inputfile_entry_t
{
  uint16_t product_size;
  uint16_t block_size;
  float gflops;
};

struct inputfile_t
{
  string filename;
  vector<inputfile_entry_t> entries;

  inputfile_t(const string& fname)
    : filename(fname)
  {
    ifstream stream(filename);
    if (!stream.is_open()) {
      cerr << "couldn't open input file: " << filename << endl;
      exit(1);
    }
    string line;
    bool is_in_measurements = false;
    while (getline(stream, line)) {
      if (line.empty()) continue;
      if (line.find("BEGIN MEASUREMENTS") == 0) {
        is_in_measurements = true;
        continue;
      }

      if (!is_in_measurements) {
        continue;
      }

      unsigned int product_size, block_size;
      float gflops;
      int sscanf_result =
        sscanf(line.c_str(), "%x %x %f",
               &product_size,
               &block_size,
               &gflops);
      if (3 != sscanf_result ||
          !product_size ||
          product_size > 0xfff ||
          !block_size ||
          block_size > 0xfff ||
          !isfinite(gflops))
      {
        cerr << "ill-formed input file: " << filename << endl;
        cerr << "offending line:" << endl << line << endl;
        exit(1);
      }
      inputfile_entry_t entry;
      entry.product_size = uint16_t(product_size);
      entry.block_size = uint16_t(block_size);
      entry.gflops = gflops;
      entries.push_back(entry);
    }
    stream.close();
    if (!is_in_measurements) {
      cerr << "Input file " << filename << " didn't contain a BEGIN MEASUREMENTS line. Wrong file?" << endl;
      exit(1);
    }
    if (entries.empty()) {
      cerr << "didn't find any measurements in input file: " << filename << endl;
      exit(1);
    }
    //cerr << "read " << entries.size() << " measurements from " << filename << endl;
  }
};

struct preprocessed_inputfile_entry_t
{
  uint16_t product_size;
  uint16_t block_size;

  float efficiency;
};

bool lower_efficiency(const preprocessed_inputfile_entry_t& e1, const preprocessed_inputfile_entry_t& e2)
{
  return e1.efficiency < e2.efficiency;
}

struct preprocessed_inputfile_t
{
  string filename;
  vector<preprocessed_inputfile_entry_t> entries;

  preprocessed_inputfile_t(const inputfile_t& inputfile)
    : filename(inputfile.filename)
  {
    auto it = inputfile.entries.begin();
    auto it_first_with_given_product_size = it;
    while (it != inputfile.entries.end()) {
      ++it;
      if (it == inputfile.entries.end() ||
        it->product_size != it_first_with_given_product_size->product_size)
      {
        import_input_file_range_one_product_size(it_first_with_given_product_size, it);
        it_first_with_given_product_size = it;
      }
    }
  }

private:
  void import_input_file_range_one_product_size(
    const vector<inputfile_entry_t>::const_iterator& begin,
    const vector<inputfile_entry_t>::const_iterator& end)
  {
    uint16_t product_size = begin->product_size;
    float max_gflops = 0.0f;
    for (auto it = begin; it != end; ++it) {
      if (it->product_size != product_size) {
        cerr << "Unexpected ordering of entries in " << filename << endl;
        cerr << "(Expected all entries for product size " << hex << product_size << dec << " to be grouped)" << endl;
        exit(1);
      }
      max_gflops = max(max_gflops, it->gflops);
    }
    for (auto it = begin; it != end; ++it) {
      preprocessed_inputfile_entry_t entry;
      entry.product_size = it->product_size;
      entry.block_size = it->block_size;
      entry.efficiency = it->gflops / max_gflops;
      entries.push_back(entry);
    }
  }
};

void check_all_files_in_same_exact_order(
       const vector<preprocessed_inputfile_t>& preprocessed_inputfiles)
{
  if (preprocessed_inputfiles.empty()) {
    return;
  }

  const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[0];
  const size_t num_entries = first_file.entries.size();

  for (size_t i = 0; i < preprocessed_inputfiles.size(); i++) {
    if (preprocessed_inputfiles[i].entries.size() != num_entries) {
      cerr << "these files have different number of entries: "
           << preprocessed_inputfiles[i].filename
           << " and "
           << first_file.filename
           << endl;
      exit(1);
    }
  }

  for (size_t entry_index = 0; entry_index < num_entries; entry_index++) {
    const uint16_t entry_product_size = first_file.entries[entry_index].product_size;
    const uint16_t entry_block_size = first_file.entries[entry_index].block_size;
    for (size_t file_index = 0; file_index < preprocessed_inputfiles.size(); file_index++) {
      const preprocessed_inputfile_t& cur_file = preprocessed_inputfiles[file_index];
      if (cur_file.entries[entry_index].product_size != entry_product_size ||
          cur_file.entries[entry_index].block_size != entry_block_size)
      {
        cerr << "entries not in same order between these files: "
             << first_file.filename
             << " and "
             << cur_file.filename
             << endl;
        exit(1);
      }
    }
  }
}

float efficiency_of_subset(
        const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
        const vector<size_t>& subset)
{
  if (subset.size() <= 1) {
    return 1.0f;
  }
  const preprocessed_inputfile_t& first_file = preprocessed_inputfiles[subset[0]];
  const size_t num_entries = first_file.entries.size();
  float efficiency = 1.0f;
  size_t entry_index = 0;
  size_t first_entry_index_with_this_product_size = 0;
  uint16_t product_size = first_file.entries[0].product_size;
  while (entry_index < num_entries) {
    ++entry_index;
    if (entry_index == num_entries ||
        first_file.entries[entry_index].product_size != product_size)
    {
      float efficiency_this_product_size = 0.0f;
      for (size_t e = first_entry_index_with_this_product_size; e < entry_index; e++) {
        float efficiency_this_entry = 1.0f;
        for (auto i = subset.begin(); i != subset.end(); ++i) {
          efficiency_this_entry = min(efficiency_this_entry, preprocessed_inputfiles[*i].entries[e].efficiency);
        }
        efficiency_this_product_size = max(efficiency_this_product_size, efficiency_this_entry);
      }
      efficiency = min(efficiency, efficiency_this_product_size);
      first_entry_index_with_this_product_size = entry_index;
      product_size = first_file.entries[entry_index].product_size;
    }
  }

  return efficiency;
}

float efficiency_of_partition(
        const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
        const vector<vector<size_t>>& partition)
{
  float efficiency = 1.0f;
  for (auto s = partition.begin(); s != partition.end(); ++s) {
    efficiency = min(efficiency, efficiency_of_subset(preprocessed_inputfiles, *s));
  }
  return efficiency;
}

void make_first_subset(size_t subset_size, vector<size_t>& out_subset, size_t set_size)
{
  assert(subset_size >= 1 && subset_size <= set_size);
  out_subset.resize(subset_size);
  for (size_t i = 0; i < subset_size; i++) {
    out_subset[i] = i;
  }
}

bool is_last_subset(const vector<size_t>& subset, size_t set_size)
{
  return subset[0] == set_size - subset.size();
}

void next_subset(vector<size_t>& inout_subset, size_t set_size)
{
  if (is_last_subset(inout_subset, set_size)) {
    cerr << "iterating past the last subset" << endl;
    abort();
  }
  size_t i = 1;
  while (inout_subset[inout_subset.size() - i] == set_size - i) {
    i++;
    assert(i <= inout_subset.size());
  }
  size_t first_index_to_change = inout_subset.size() - i;
  inout_subset[first_index_to_change]++;
  size_t p = inout_subset[first_index_to_change];
  for (size_t j = first_index_to_change + 1; j < inout_subset.size(); j++) {
    inout_subset[j] = ++p;
  }
}

const size_t number_of_subsets_limit = 100;
const size_t always_search_subsets_of_size_at_least = 2;

bool is_number_of_subsets_feasible(size_t n, size_t p)
{ 
  assert(n>0 && p>0 && p<=n);
  uint64_t numerator = 1, denominator = 1;
  for (size_t i = 0; i < p; i++) {
    numerator *= n - i;
    denominator *= i + 1;
    if (numerator > denominator * number_of_subsets_limit) {
      return false;
    }
  }
  return true;
}

size_t max_feasible_subset_size(size_t n)
{
  assert(n > 0);
  const size_t minresult = min<size_t>(n-1, always_search_subsets_of_size_at_least);
  for (size_t p = 1; p <= n - 1; p++) {
    if (!is_number_of_subsets_feasible(n, p+1)) {
      return max(p, minresult);
    }
  }
  return n - 1;
}

void find_subset_with_efficiency_higher_than(
       const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
       float required_efficiency_to_beat,
       vector<size_t>& inout_remainder,
       vector<size_t>& out_subset)
{
  out_subset.resize(0);

  if (required_efficiency_to_beat >= 1.0f) {
    cerr << "can't beat efficiency 1." << endl;
    abort();
  }

  while (!inout_remainder.empty()) {

    vector<size_t> candidate_indices(inout_remainder.size());
    for (size_t i = 0; i < candidate_indices.size(); i++) {
      candidate_indices[i] = i;
    }

    size_t candidate_indices_subset_size = max_feasible_subset_size(candidate_indices.size());
    while (candidate_indices_subset_size >= 1) {
      vector<size_t> candidate_indices_subset;
      make_first_subset(candidate_indices_subset_size,
                        candidate_indices_subset,
                        candidate_indices.size());

      vector<size_t> best_candidate_indices_subset;
      float best_efficiency = 0.0f;
      vector<size_t> trial_subset = out_subset;
      trial_subset.resize(out_subset.size() + candidate_indices_subset_size);
      while (true)
      {
        for (size_t i = 0; i < candidate_indices_subset_size; i++) {
          trial_subset[out_subset.size() + i] = inout_remainder[candidate_indices_subset[i]];
        }
        
        float trial_efficiency = efficiency_of_subset(preprocessed_inputfiles, trial_subset);
        if (trial_efficiency > best_efficiency) {
          best_efficiency = trial_efficiency;
          best_candidate_indices_subset = candidate_indices_subset;
        }
        if (is_last_subset(candidate_indices_subset, candidate_indices.size())) {
          break;
        }
        next_subset(candidate_indices_subset, candidate_indices.size());
      }
       
      if (best_efficiency > required_efficiency_to_beat) {
        for (size_t i = 0; i < best_candidate_indices_subset.size(); i++) {
          candidate_indices[i] = candidate_indices[best_candidate_indices_subset[i]];
        }
        candidate_indices.resize(best_candidate_indices_subset.size());
      }
      candidate_indices_subset_size--;
    }
      
    size_t candidate_index = candidate_indices[0];
    auto candidate_iterator = inout_remainder.begin() + candidate_index;
    vector<size_t> trial_subset = out_subset;

    trial_subset.push_back(*candidate_iterator);
    float trial_efficiency = efficiency_of_subset(preprocessed_inputfiles, trial_subset);
    if (trial_efficiency > required_efficiency_to_beat) {
      out_subset.push_back(*candidate_iterator);
      inout_remainder.erase(candidate_iterator);
    } else {
      break;
    }
  }
}

void find_partition_with_efficiency_higher_than(
       const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
       float required_efficiency_to_beat,
       vector<vector<size_t>>& out_partition)
{
  out_partition.resize(0);

  vector<size_t> remainder;
  for (size_t i = 0; i < preprocessed_inputfiles.size(); i++) {
    remainder.push_back(i);
  }

  while (!remainder.empty()) {
    vector<size_t> new_subset;
    find_subset_with_efficiency_higher_than(
      preprocessed_inputfiles,
      required_efficiency_to_beat,
      remainder,
      new_subset);
    out_partition.push_back(new_subset);
  }
}

void print_partition(
       const vector<preprocessed_inputfile_t>& preprocessed_inputfiles,
       const vector<vector<size_t>>& partition)
{
  float efficiency = efficiency_of_partition(preprocessed_inputfiles, partition);
  cout << "Partition into " << partition.size() << " subsets for " << efficiency * 100.0f << "% efficiency"  << endl;
  for (auto subset = partition.begin(); subset != partition.end(); ++subset) {
    cout << "  Subset " << (subset - partition.begin())
         << ", efficiency " << efficiency_of_subset(preprocessed_inputfiles, *subset) * 100.0f << "%:"
         << endl;
    for (auto file = subset->begin(); file != subset->end(); ++file) {
      cout << "    " << preprocessed_inputfiles[*file].filename << endl;
    }
  }
  cout << endl;
}

struct action_t
{
  virtual const char* invokation_name() const { abort(); return nullptr; }
  virtual void run(const vector<preprocessed_inputfile_t>& preprocessed_inputfiles) const { abort(); }
  virtual ~action_t() {}
};

struct partition_action_t : action_t
{
  virtual const char* invokation_name() const { return "partition"; }
  virtual void run(const vector<preprocessed_inputfile_t>& preprocessed_inputfiles) const
  {
    check_all_files_in_same_exact_order(preprocessed_inputfiles);

    float required_efficiency_to_beat = 0.0f;
    vector<vector<vector<size_t>>> partitions;
    cerr << "searching for partitions...\r" << flush;
    while (true)
    {
      vector<vector<size_t>> partition;
      find_partition_with_efficiency_higher_than(
        preprocessed_inputfiles,
        required_efficiency_to_beat,
        partition);
      float actual_efficiency = efficiency_of_partition(preprocessed_inputfiles, partition);
      cerr << "partition " << preprocessed_inputfiles.size() << " files into " << partition.size()
           << " subsets for " << 100.0f * actual_efficiency
           << " % efficiency"
           << "                  \r" << flush;
      partitions.push_back(partition);
      if (partition.size() == preprocessed_inputfiles.size() || actual_efficiency == 1.0f) {
        break;
      }
      required_efficiency_to_beat = actual_efficiency;
    }
    cerr << "                                                                  " << endl;
    while (true) {
      bool repeat = false;
      for (size_t i = 0; i < partitions.size() - 1; i++) {
        if (partitions[i].size() >= partitions[i+1].size()) {
          partitions.erase(partitions.begin() + i);
          repeat = true;
          break;
        }
      }
      if (!repeat) {
        break;
      }
    }
    for (auto it = partitions.begin(); it != partitions.end(); ++it) {
      print_partition(preprocessed_inputfiles, *it);
    }
  }
};

uint8_t log2_pot(size_t x) {
  size_t l = 0;
  while (x >>= 1) l++;
  return l;
}

uint16_t compact_size_triple(size_t k, size_t m, size_t n)
{
  return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n);
}

// just a helper to store a triple of K,M,N sizes for matrix product
struct size_triple_t
{
  size_t k, m, n;
  size_triple_t() : k(0), m(0), n(0) {}
  size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {}
  size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {}
  size_triple_t(uint16_t compact)
  {
    k = 1 << ((compact & 0xf00) >> 8);
    m = 1 << ((compact & 0x0f0) >> 4);
    n = 1 << ((compact & 0x00f) >> 0);
  }
  bool is_cubic() const { return k == m && m == n; }
};

struct evaluate_defaults_action_t : action_t
{
  virtual const char* invokation_name() const { return "evaluate-defaults"; }
  virtual void run(const vector<preprocessed_inputfile_t>& preprocessed_inputfiles) const
  {
    if (preprocessed_inputfiles.size() > 1) {
      cerr << invokation_name() << " only works with one input file." << endl;
      exit(1);
    }

    const preprocessed_inputfile_t& preprocessed_inputfile = preprocessed_inputfiles.front();

    uint16_t product_size = 0;
    uint16_t default_block_size = 0;
    vector<preprocessed_inputfile_entry_t> results, cubic_results;
    for (auto it = preprocessed_inputfile.entries.begin(); it != preprocessed_inputfile.entries.end(); ++it) {
      if (it->product_size != product_size) {
        product_size = it->product_size;
        size_triple_t product_size_triple(product_size);
        Eigen::Index k = product_size_triple.k,
                     m = product_size_triple.m,
                     n = product_size_triple.n;
        Eigen::internal::computeProductBlockingSizes<float, float>(k, m, n);
        default_block_size = compact_size_triple(k, m, n);
      }
      if (it->block_size == default_block_size) {
        results.push_back(*it);
        if (size_triple_t(product_size).is_cubic()) {
          cubic_results.push_back(*it);
        }
      }
    }

    cerr << "Below are all results - first column is product size tripe, " << endl
         << "second column is block size triple, in hex kmn form where" << endl
         << "k, m, n are the log2 of the actual values, i.e. a89 means" << endl
         << "k=1024, m=256, n=512." << endl << endl;
    for (auto it = results.begin(); it != results.end(); ++it) {
      cerr << hex << it->product_size << " " << it->block_size
           << " efficiency " << std::dec << 100.0f * it->efficiency << " %" << endl;
    }
    cerr << endl;
    sort(results.begin(), results.end(), lower_efficiency);
    sort(cubic_results.begin(), cubic_results.end(), lower_efficiency);
    cerr << "Efficiency summary: min = "
         << 100.0f * results.front().efficiency << " %, max = "
         << 100.0f * results.back().efficiency << " %, median = "
         << 100.0f * results[results.size() / 2].efficiency << " %" << endl;
    cerr << "20% of product sizes have efficiency <= " << 100.0f * results[results.size() * 20 / 100].efficiency << " %" << endl;
    cerr << "10% of product sizes have efficiency <= " << 100.0f * results[results.size() * 10 / 100].efficiency << " %" << endl;
    cerr << "5% of product sizes have efficiency <= " << 100.0f * results[results.size() * 5 / 100].efficiency << " %" << endl;
    cerr << "Cubic sizes efficiency summary: min = "
         << 100.0f * cubic_results.front().efficiency << " %, max = "
         << 100.0f * cubic_results.back().efficiency << " %, median = "
         << 100.0f * cubic_results[cubic_results.size() / 2].efficiency << " %" << endl;
    
  }
};


void show_usage_and_exit(int argc, char* argv[],
                         const vector<unique_ptr<action_t>>& available_actions)
{
  cerr << "usage: " << argv[0] << " <action> <input files...>" << endl;
  cerr << "available actions:" << endl;
  for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
    cerr << "  " << (*it)->invokation_name() << endl;
  } 
  cerr << "the input files should each contain an output of benchmark-blocking-sizes" << endl;
  exit(1);
}

int main(int argc, char* argv[])
{
  cout.precision(3);
  cerr.precision(3);

  vector<unique_ptr<action_t>> available_actions;
  available_actions.emplace_back(new partition_action_t);
  available_actions.emplace_back(new evaluate_defaults_action_t);

  auto action = available_actions.end();

  if (argc <= 2) {
    show_usage_and_exit(argc, argv, available_actions);
  }
  for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
    if (!strcmp(argv[1], (*it)->invokation_name())) {
      action = it;
      break;
    }
  }

  if (action == available_actions.end()) {
    show_usage_and_exit(argc, argv, available_actions);
  }

  vector<string> inputfilenames;
  for (int i = 2; i < argc; i++) {
  	inputfilenames.emplace_back(argv[i]);
  }

  vector<preprocessed_inputfile_t> preprocessed_inputfiles;
  for (auto it = inputfilenames.begin(); it != inputfilenames.end(); ++it) {
    preprocessed_inputfiles.emplace_back(inputfile_t(*it));
  }

  (*action)->run(preprocessed_inputfiles);
}