aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/BenchSparseUtil.h
blob: f4b67cb8d30c50e325d0ece71b5f094e6f308ff5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

#include <Eigen/Array>
#include <Eigen/Sparse>
#include <bench/BenchTimer.h>
#include <set>

using namespace std;
using namespace Eigen;
USING_PART_OF_NAMESPACE_EIGEN

#ifndef SIZE
#define SIZE 1024
#endif

#ifndef DENSITY
#define DENSITY 0.01
#endif

#ifndef SCALAR
#define SCALAR double
#endif

typedef SCALAR Scalar;
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
typedef Matrix<Scalar,Dynamic,1> DenseVector;
typedef SparseMatrix<Scalar> EigenSparseMatrix;

void fillMatrix(float density, int rows, int cols,  EigenSparseMatrix& dst)
{
  dst.startFill(rows*cols*density);
  for(int j = 0; j < cols; j++)
  {
    for(int i = 0; i < rows; i++)
    {
      Scalar v = (ei_random<float>(0,1) < density) ? ei_random<Scalar>() : 0;
      if (v!=0)
        dst.fillrand(i,j) = v;
    }
  }
  dst.endFill();
}

void fillMatrix2(int nnzPerCol, int rows, int cols,  EigenSparseMatrix& dst)
{
  std::cout << "alloc " << nnzPerCol*cols << "\n";
  dst.startFill(nnzPerCol*cols);
  for(int j = 0; j < cols; j++)
  {
    std::set<int> aux;
    for(int i = 0; i < nnzPerCol; i++)
    {
      int k = ei_random<int>(0,rows-1);
      while (aux.find(k)!=aux.end())
        k = ei_random<int>(0,rows-1);
      aux.insert(k);

      dst.fillrand(k,j) = ei_random<Scalar>();
    }
  }
  dst.endFill();
}

void eiToDense(const EigenSparseMatrix& src, DenseMatrix& dst)
{
  dst.setZero();
  for (int j=0; j<src.cols(); ++j)
    for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it)
      dst(it.index(),j) = it.value();
}

#ifndef NOGMM
#include "gmm/gmm.h"
typedef gmm::csc_matrix<Scalar> GmmSparse;
typedef gmm::col_matrix< gmm::wsvector<Scalar> > GmmDynSparse;
void eiToGmm(const EigenSparseMatrix& src, GmmSparse& dst)
{
  GmmDynSparse tmp(src.rows(), src.cols());
  for (int j=0; j<src.cols(); ++j)
    for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it)
      tmp(it.index(),j) = it.value();
  gmm::copy(tmp, dst);
}
#endif

#ifndef NOMTL
#include <boost/numeric/mtl/mtl.hpp>
typedef mtl::compressed2D<Scalar, mtl::matrix::parameters<mtl::tag::col_major> > MtlSparse;
typedef mtl::compressed2D<Scalar, mtl::matrix::parameters<mtl::tag::row_major> > MtlSparseRowMajor;
void eiToMtl(const EigenSparseMatrix& src, MtlSparse& dst)
{
  mtl::matrix::inserter<MtlSparse> ins(dst);
  for (int j=0; j<src.cols(); ++j)
    for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it)
      ins[it.index()][j] = it.value();
}
#endif

#ifdef CSPARSE
extern "C" {
#include "cs.h"
}
void eiToCSparse(const EigenSparseMatrix& src, cs* &dst)
{
  cs* aux = cs_spalloc (0, 0, 1, 1, 1);
  for (int j=0; j<src.cols(); ++j)
    for (EigenSparseMatrix::InnerIterator it(src.derived(), j); it; ++it)
      if (!cs_entry(aux, it.index(), j, it.value()))
      {
        std::cout << "cs_entry error\n";
        exit(2);
      }
   dst = cs_compress(aux);
//    cs_spfree(aux);
}
#endif // CSPARSE

#ifndef NOUBLAS
#include <boost/numeric/ublas/vector.hpp>
#include <boost/numeric/ublas/matrix.hpp>
#include <boost/numeric/ublas/io.hpp>
#include <boost/numeric/ublas/triangular.hpp>
#include <boost/numeric/ublas/vector_sparse.hpp>
#include <boost/numeric/ublas/matrix_sparse.hpp>
#include <boost/numeric/ublas/vector_of_vector.hpp>

#endif