aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SuperLUSupport/SuperLUSupport.h
blob: e3fae4a3629fb8ecbc0c793894b4b5d2b5fa36ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SUPERLUSUPPORT_H
#define EIGEN_SUPERLUSUPPORT_H

namespace Eigen { 

#define DECL_GSSVX(PREFIX,FLOATTYPE,KEYTYPE)		\
    extern "C" {                                                                                          \
      typedef struct { FLOATTYPE for_lu; FLOATTYPE total_needed; int expansions; } PREFIX##mem_usage_t;   \
      extern void PREFIX##gssvx(superlu_options_t *, SuperMatrix *, int *, int *, int *,                  \
                                char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,           \
                                void *, int, SuperMatrix *, SuperMatrix *,                                \
                                FLOATTYPE *, FLOATTYPE *, FLOATTYPE *, FLOATTYPE *,                       \
                                PREFIX##mem_usage_t *, SuperLUStat_t *, int *);                           \
    }                                                                                                     \
    inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A,                                \
         int *perm_c, int *perm_r, int *etree, char *equed,                                               \
         FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                                      \
         SuperMatrix *U, void *work, int lwork,                                                           \
         SuperMatrix *B, SuperMatrix *X,                                                                  \
         FLOATTYPE *recip_pivot_growth,                                                                   \
         FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr,                                              \
         SuperLUStat_t *stats, int *info, KEYTYPE) {                                                      \
    PREFIX##mem_usage_t mem_usage;                                                                        \
    PREFIX##gssvx(options, A, perm_c, perm_r, etree, equed, R, C, L,                                      \
         U, work, lwork, B, X, recip_pivot_growth, rcond,                                                 \
         ferr, berr, &mem_usage, stats, info);                                                            \
    return mem_usage.for_lu; /* bytes used by the factor storage */                                       \
  }

DECL_GSSVX(s,float,float)
DECL_GSSVX(c,float,std::complex<float>)
DECL_GSSVX(d,double,double)
DECL_GSSVX(z,double,std::complex<double>)

#ifdef MILU_ALPHA
#define EIGEN_SUPERLU_HAS_ILU
#endif

#ifdef EIGEN_SUPERLU_HAS_ILU

// similarly for the incomplete factorization using gsisx
#define DECL_GSISX(PREFIX,FLOATTYPE,KEYTYPE)                                                    \
    extern "C" {                                                                                \
      extern void PREFIX##gsisx(superlu_options_t *, SuperMatrix *, int *, int *, int *,        \
                         char *, FLOATTYPE *, FLOATTYPE *, SuperMatrix *, SuperMatrix *,        \
                         void *, int, SuperMatrix *, SuperMatrix *, FLOATTYPE *, FLOATTYPE *,   \
                         PREFIX##mem_usage_t *, SuperLUStat_t *, int *);                        \
    }                                                                                           \
    inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A,                      \
         int *perm_c, int *perm_r, int *etree, char *equed,                                     \
         FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L,                                            \
         SuperMatrix *U, void *work, int lwork,                                                 \
         SuperMatrix *B, SuperMatrix *X,                                                        \
         FLOATTYPE *recip_pivot_growth,                                                         \
         FLOATTYPE *rcond,                                                                      \
         SuperLUStat_t *stats, int *info, KEYTYPE) {                                            \
    PREFIX##mem_usage_t mem_usage;                                                              \
    PREFIX##gsisx(options, A, perm_c, perm_r, etree, equed, R, C, L,                            \
         U, work, lwork, B, X, recip_pivot_growth, rcond,                                       \
         &mem_usage, stats, info);                                                              \
    return mem_usage.for_lu; /* bytes used by the factor storage */                             \
  }

DECL_GSISX(s,float,float)
DECL_GSISX(c,float,std::complex<float>)
DECL_GSISX(d,double,double)
DECL_GSISX(z,double,std::complex<double>)

#endif

template<typename MatrixType>
struct SluMatrixMapHelper;

/** \internal
  *
  * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
  * and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
  *
  * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
  */
struct SluMatrix : SuperMatrix
{
  SluMatrix()
  {
    Store = &storage;
  }

  SluMatrix(const SluMatrix& other)
    : SuperMatrix(other)
  {
    Store = &storage;
    storage = other.storage;
  }

  SluMatrix& operator=(const SluMatrix& other)
  {
    SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
    Store = &storage;
    storage = other.storage;
    return *this;
  }

  struct
  {
    union {int nnz;int lda;};
    void *values;
    int *innerInd;
    int *outerInd;
  } storage;

  void setStorageType(Stype_t t)
  {
    Stype = t;
    if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
      Store = &storage;
    else
    {
      eigen_assert(false && "storage type not supported");
      Store = 0;
    }
  }

  template<typename Scalar>
  void setScalarType()
  {
    if (internal::is_same<Scalar,float>::value)
      Dtype = SLU_S;
    else if (internal::is_same<Scalar,double>::value)
      Dtype = SLU_D;
    else if (internal::is_same<Scalar,std::complex<float> >::value)
      Dtype = SLU_C;
    else if (internal::is_same<Scalar,std::complex<double> >::value)
      Dtype = SLU_Z;
    else
    {
      eigen_assert(false && "Scalar type not supported by SuperLU");
    }
  }

  template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
  static SluMatrix Map(Matrix<Scalar,Rows,Cols,Options,MRows,MCols>& mat)
  {
    typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
    eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
    SluMatrix res;
    res.setStorageType(SLU_DN);
    res.setScalarType<Scalar>();
    res.Mtype     = SLU_GE;

    res.nrow      = mat.rows();
    res.ncol      = mat.cols();

    res.storage.lda       = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride();
    res.storage.values    = mat.data();
    return res;
  }

  template<typename MatrixType>
  static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
  {
    SluMatrix res;
    if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
    {
      res.setStorageType(SLU_NR);
      res.nrow      = mat.cols();
      res.ncol      = mat.rows();
    }
    else
    {
      res.setStorageType(SLU_NC);
      res.nrow      = mat.rows();
      res.ncol      = mat.cols();
    }

    res.Mtype       = SLU_GE;

    res.storage.nnz       = mat.nonZeros();
    res.storage.values    = mat.derived().valuePtr();
    res.storage.innerInd  = mat.derived().innerIndexPtr();
    res.storage.outerInd  = mat.derived().outerIndexPtr();

    res.setScalarType<typename MatrixType::Scalar>();

    // FIXME the following is not very accurate
    if (MatrixType::Flags & Upper)
      res.Mtype = SLU_TRU;
    if (MatrixType::Flags & Lower)
      res.Mtype = SLU_TRL;

    eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");

    return res;
  }
};

template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
{
  typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
  static void run(MatrixType& mat, SluMatrix& res)
  {
    eigen_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
    res.setStorageType(SLU_DN);
    res.setScalarType<Scalar>();
    res.Mtype     = SLU_GE;

    res.nrow      = mat.rows();
    res.ncol      = mat.cols();

    res.storage.lda       = mat.outerStride();
    res.storage.values    = mat.data();
  }
};

template<typename Derived>
struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
{
  typedef Derived MatrixType;
  static void run(MatrixType& mat, SluMatrix& res)
  {
    if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
    {
      res.setStorageType(SLU_NR);
      res.nrow      = mat.cols();
      res.ncol      = mat.rows();
    }
    else
    {
      res.setStorageType(SLU_NC);
      res.nrow      = mat.rows();
      res.ncol      = mat.cols();
    }

    res.Mtype       = SLU_GE;

    res.storage.nnz       = mat.nonZeros();
    res.storage.values    = mat.valuePtr();
    res.storage.innerInd  = mat.innerIndexPtr();
    res.storage.outerInd  = mat.outerIndexPtr();

    res.setScalarType<typename MatrixType::Scalar>();

    // FIXME the following is not very accurate
    if (MatrixType::Flags & Upper)
      res.Mtype = SLU_TRU;
    if (MatrixType::Flags & Lower)
      res.Mtype = SLU_TRL;

    eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
  }
};

namespace internal {

template<typename MatrixType>
SluMatrix asSluMatrix(MatrixType& mat)
{
  return SluMatrix::Map(mat);
}

/** View a Super LU matrix as an Eigen expression */
template<typename Scalar, int Flags, typename Index>
MappedSparseMatrix<Scalar,Flags,Index> map_superlu(SluMatrix& sluMat)
{
  eigen_assert((Flags&RowMajor)==RowMajor && sluMat.Stype == SLU_NR
         || (Flags&ColMajor)==ColMajor && sluMat.Stype == SLU_NC);

  Index outerSize = (Flags&RowMajor)==RowMajor ? sluMat.ncol : sluMat.nrow;

  return MappedSparseMatrix<Scalar,Flags,Index>(
    sluMat.nrow, sluMat.ncol, sluMat.storage.outerInd[outerSize],
    sluMat.storage.outerInd, sluMat.storage.innerInd, reinterpret_cast<Scalar*>(sluMat.storage.values) );
}

} // end namespace internal

/** \ingroup SuperLUSupport_Module
  * \class SuperLUBase
  * \brief The base class for the direct and incomplete LU factorization of SuperLU
  */
template<typename _MatrixType, typename Derived>
class SuperLUBase
{
  public:
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar,Dynamic,1> Vector;
    typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
    typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;    
    typedef SparseMatrix<Scalar> LUMatrixType;

  public:

    SuperLUBase() {}

    ~SuperLUBase()
    {
      clearFactors();
    }
    
    Derived& derived() { return *static_cast<Derived*>(this); }
    const Derived& derived() const { return *static_cast<const Derived*>(this); }
    
    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }
    
    /** \returns a reference to the Super LU option object to configure the  Super LU algorithms. */
    inline superlu_options_t& options() { return m_sluOptions; }
    
    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "Decomposition is not initialized.");
      return m_info;
    }

    /** Computes the sparse Cholesky decomposition of \a matrix */
    void compute(const MatrixType& matrix)
    {
      derived().analyzePattern(matrix);
      derived().factorize(matrix);
    }
    
    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
    template<typename Rhs>
    inline const internal::solve_retval<SuperLUBase, Rhs> solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "SuperLU is not initialized.");
      eigen_assert(rows()==b.rows()
                && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<SuperLUBase, Rhs>(*this, b.derived());
    }
    
    /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * \sa compute()
      */
//     template<typename Rhs>
//     inline const internal::sparse_solve_retval<SuperLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const
//     {
//       eigen_assert(m_isInitialized && "SuperLU is not initialized.");
//       eigen_assert(rows()==b.rows()
//                 && "SuperLU::solve(): invalid number of rows of the right hand side matrix b");
//       return internal::sparse_solve_retval<SuperLU, Rhs>(*this, b.derived());
//     }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& /*matrix*/)
    {
      m_isInitialized = true;
      m_info = Success;
      m_analysisIsOk = true;
      m_factorizationIsOk = false;
    }
    
    template<typename Stream>
    void dumpMemory(Stream& s)
    {}
    
  protected:
    
    void initFactorization(const MatrixType& a)
    {
      set_default_options(&this->m_sluOptions);
      
      const int size = a.rows();
      m_matrix = a;

      m_sluA = internal::asSluMatrix(m_matrix);
      clearFactors();

      m_p.resize(size);
      m_q.resize(size);
      m_sluRscale.resize(size);
      m_sluCscale.resize(size);
      m_sluEtree.resize(size);

      // set empty B and X
      m_sluB.setStorageType(SLU_DN);
      m_sluB.setScalarType<Scalar>();
      m_sluB.Mtype          = SLU_GE;
      m_sluB.storage.values = 0;
      m_sluB.nrow           = 0;
      m_sluB.ncol           = 0;
      m_sluB.storage.lda    = size;
      m_sluX                = m_sluB;
      
      m_extractedDataAreDirty = true;
    }
    
    void init()
    {
      m_info = InvalidInput;
      m_isInitialized = false;
      m_sluL.Store = 0;
      m_sluU.Store = 0;
    }
    
    void extractData() const;

    void clearFactors()
    {
      if(m_sluL.Store)
        Destroy_SuperNode_Matrix(&m_sluL);
      if(m_sluU.Store)
        Destroy_CompCol_Matrix(&m_sluU);

      m_sluL.Store = 0;
      m_sluU.Store = 0;

      memset(&m_sluL,0,sizeof m_sluL);
      memset(&m_sluU,0,sizeof m_sluU);
    }

    // cached data to reduce reallocation, etc.
    mutable LUMatrixType m_l;
    mutable LUMatrixType m_u;
    mutable IntColVectorType m_p;
    mutable IntRowVectorType m_q;

    mutable LUMatrixType m_matrix;  // copy of the factorized matrix
    mutable SluMatrix m_sluA;
    mutable SuperMatrix m_sluL, m_sluU;
    mutable SluMatrix m_sluB, m_sluX;
    mutable SuperLUStat_t m_sluStat;
    mutable superlu_options_t m_sluOptions;
    mutable std::vector<int> m_sluEtree;
    mutable Matrix<RealScalar,Dynamic,1> m_sluRscale, m_sluCscale;
    mutable Matrix<RealScalar,Dynamic,1> m_sluFerr, m_sluBerr;
    mutable char m_sluEqued;

    mutable ComputationInfo m_info;
    bool m_isInitialized;
    int m_factorizationIsOk;
    int m_analysisIsOk;
    mutable bool m_extractedDataAreDirty;
    
  private:
    SuperLUBase(SuperLUBase& ) { }
};


/** \ingroup SuperLUSupport_Module
  * \class SuperLU
  * \brief A sparse direct LU factorization and solver based on the SuperLU library
  *
  * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization
  * using the SuperLU library. The sparse matrix A must be squared and invertible. The vectors or matrices
  * X and B can be either dense or sparse.
  *
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  *
  * \sa \ref TutorialSparseDirectSolvers
  */
template<typename _MatrixType>
class SuperLU : public SuperLUBase<_MatrixType,SuperLU<_MatrixType> >
{
  public:
    typedef SuperLUBase<_MatrixType,SuperLU> Base;
    typedef _MatrixType MatrixType;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    typedef typename Base::Index Index;
    typedef typename Base::IntRowVectorType IntRowVectorType;
    typedef typename Base::IntColVectorType IntColVectorType;    
    typedef typename Base::LUMatrixType LUMatrixType;
    typedef TriangularView<LUMatrixType, Lower|UnitDiag>  LMatrixType;
    typedef TriangularView<LUMatrixType,  Upper>           UMatrixType;

  public:

    SuperLU() : Base() { init(); }

    SuperLU(const MatrixType& matrix) : Base()
    {
      Base::init();
      compute(matrix);
    }

    ~SuperLU()
    {
    }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      m_info = InvalidInput;
      m_isInitialized = false;
      Base::analyzePattern(matrix);
    }
    
    /** Performs a numeric decomposition of \a matrix
      *
      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
      *
      * \sa analyzePattern()
      */
    void factorize(const MatrixType& matrix);
    
    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** \internal */
    template<typename Rhs,typename Dest>
    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
    #endif // EIGEN_PARSED_BY_DOXYGEN
    
    inline const LMatrixType& matrixL() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_l;
    }

    inline const UMatrixType& matrixU() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_u;
    }

    inline const IntColVectorType& permutationP() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_p;
    }

    inline const IntRowVectorType& permutationQ() const
    {
      if (m_extractedDataAreDirty) this->extractData();
      return m_q;
    }
    
    Scalar determinant() const;
    
  protected:
    
    using Base::m_matrix;
    using Base::m_sluOptions;
    using Base::m_sluA;
    using Base::m_sluB;
    using Base::m_sluX;
    using Base::m_p;
    using Base::m_q;
    using Base::m_sluEtree;
    using Base::m_sluEqued;
    using Base::m_sluRscale;
    using Base::m_sluCscale;
    using Base::m_sluL;
    using Base::m_sluU;
    using Base::m_sluStat;
    using Base::m_sluFerr;
    using Base::m_sluBerr;
    using Base::m_l;
    using Base::m_u;
    
    using Base::m_analysisIsOk;
    using Base::m_factorizationIsOk;
    using Base::m_extractedDataAreDirty;
    using Base::m_isInitialized;
    using Base::m_info;
    
    void init()
    {
      Base::init();
      
      set_default_options(&this->m_sluOptions);
      m_sluOptions.PrintStat        = NO;
      m_sluOptions.ConditionNumber  = NO;
      m_sluOptions.Trans            = NOTRANS;
      m_sluOptions.ColPerm          = COLAMD;
    }
    
    
  private:
    SuperLU(SuperLU& ) { }
};

template<typename MatrixType>
void SuperLU<MatrixType>::factorize(const MatrixType& a)
{
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  if(!m_analysisIsOk)
  {
    m_info = InvalidInput;
    return;
  }
  
  this->initFactorization(a);
  
  //DEBUG
//   m_sluOptions.ColPerm = COLAMD;
  m_sluOptions.Equil = NO; 
  int info = 0;
  RealScalar recip_pivot_growth, rcond;
  RealScalar ferr, berr;

  StatInit(&m_sluStat);
  SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
                &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &ferr, &berr,
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);

  m_extractedDataAreDirty = true;

  // FIXME how to better check for errors ???
  m_info = info == 0 ? Success : NumericalIssue;
  m_factorizationIsOk = true;
}

template<typename MatrixType>
template<typename Rhs,typename Dest>
void SuperLU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");

  const int size = m_matrix.rows();
  const int rhsCols = b.cols();
  eigen_assert(size==b.rows());

  m_sluOptions.Trans = NOTRANS;
  m_sluOptions.Fact = FACTORED;
  m_sluOptions.IterRefine = NOREFINE;
  

  m_sluFerr.resize(rhsCols);
  m_sluBerr.resize(rhsCols);
  m_sluB = SluMatrix::Map(b.const_cast_derived());
  m_sluX = SluMatrix::Map(x.derived());
  
  typename Rhs::PlainObject b_cpy;
  if(m_sluEqued!='N')
  {
    b_cpy = b;
    m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());  
  }

  StatInit(&m_sluStat);
  int info = 0;
  RealScalar recip_pivot_growth, rcond;
  SuperLU_gssvx(&m_sluOptions, &m_sluA,
                m_q.data(), m_p.data(),
                &m_sluEtree[0], &m_sluEqued,
                &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &m_sluFerr[0], &m_sluBerr[0],
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);
  m_info = info==0 ? Success : NumericalIssue;
}

// the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
//
//  Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
//
//  THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
//  EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
//
template<typename MatrixType, typename Derived>
void SuperLUBase<MatrixType,Derived>::extractData() const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for extracting factors, you must first call either compute() or analyzePattern()/factorize()");
  if (m_extractedDataAreDirty)
  {
    int         upper;
    int         fsupc, istart, nsupr;
    int         lastl = 0, lastu = 0;
    SCformat    *Lstore = static_cast<SCformat*>(m_sluL.Store);
    NCformat    *Ustore = static_cast<NCformat*>(m_sluU.Store);
    Scalar      *SNptr;

    const int size = m_matrix.rows();
    m_l.resize(size,size);
    m_l.resizeNonZeros(Lstore->nnz);
    m_u.resize(size,size);
    m_u.resizeNonZeros(Ustore->nnz);

    int* Lcol = m_l.outerIndexPtr();
    int* Lrow = m_l.innerIndexPtr();
    Scalar* Lval = m_l.valuePtr();

    int* Ucol = m_u.outerIndexPtr();
    int* Urow = m_u.innerIndexPtr();
    Scalar* Uval = m_u.valuePtr();

    Ucol[0] = 0;
    Ucol[0] = 0;

    /* for each supernode */
    for (int k = 0; k <= Lstore->nsuper; ++k)
    {
      fsupc   = L_FST_SUPC(k);
      istart  = L_SUB_START(fsupc);
      nsupr   = L_SUB_START(fsupc+1) - istart;
      upper   = 1;

      /* for each column in the supernode */
      for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
      {
        SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];

        /* Extract U */
        for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
        {
          Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
          /* Matlab doesn't like explicit zero. */
          if (Uval[lastu] != 0.0)
            Urow[lastu++] = U_SUB(i);
        }
        for (int i = 0; i < upper; ++i)
        {
          /* upper triangle in the supernode */
          Uval[lastu] = SNptr[i];
          /* Matlab doesn't like explicit zero. */
          if (Uval[lastu] != 0.0)
            Urow[lastu++] = L_SUB(istart+i);
        }
        Ucol[j+1] = lastu;

        /* Extract L */
        Lval[lastl] = 1.0; /* unit diagonal */
        Lrow[lastl++] = L_SUB(istart + upper - 1);
        for (int i = upper; i < nsupr; ++i)
        {
          Lval[lastl] = SNptr[i];
          /* Matlab doesn't like explicit zero. */
          if (Lval[lastl] != 0.0)
            Lrow[lastl++] = L_SUB(istart+i);
        }
        Lcol[j+1] = lastl;

        ++upper;
      } /* for j ... */

    } /* for k ... */

    // squeeze the matrices :
    m_l.resizeNonZeros(lastl);
    m_u.resizeNonZeros(lastu);

    m_extractedDataAreDirty = false;
  }
}

template<typename MatrixType>
typename SuperLU<MatrixType>::Scalar SuperLU<MatrixType>::determinant() const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for computing the determinant, you must first call either compute() or analyzePattern()/factorize()");
  
  if (m_extractedDataAreDirty)
    this->extractData();

  Scalar det = Scalar(1);
  for (int j=0; j<m_u.cols(); ++j)
  {
    if (m_u.outerIndexPtr()[j+1]-m_u.outerIndexPtr()[j] > 0)
    {
      int lastId = m_u.outerIndexPtr()[j+1]-1;
      eigen_assert(m_u.innerIndexPtr()[lastId]<=j);
      if (m_u.innerIndexPtr()[lastId]==j)
        det *= m_u.valuePtr()[lastId];
    }
  }
  if(m_sluEqued!='N')
    return det/m_sluRscale.prod()/m_sluCscale.prod();
  else
    return det;
}

#ifdef EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_SUPERLU_HAS_ILU
#endif

#ifdef EIGEN_SUPERLU_HAS_ILU

/** \ingroup SuperLUSupport_Module
  * \class SuperILU
  * \brief A sparse direct \b incomplete LU factorization and solver based on the SuperLU library
  *
  * This class allows to solve for an approximate solution of A.X = B sparse linear problems via an incomplete LU factorization
  * using the SuperLU library. This class is aimed to be used as a preconditioner of the iterative linear solvers.
  *
  * \warning This class requires SuperLU 4 or later.
  *
  * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
  *
  * \sa \ref TutorialSparseDirectSolvers, class ConjugateGradient, class BiCGSTAB
  */

template<typename _MatrixType>
class SuperILU : public SuperLUBase<_MatrixType,SuperILU<_MatrixType> >
{
  public:
    typedef SuperLUBase<_MatrixType,SuperILU> Base;
    typedef _MatrixType MatrixType;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    typedef typename Base::Index Index;

  public:

    SuperILU() : Base() { init(); }

    SuperILU(const MatrixType& matrix) : Base()
    {
      init();
      compute(matrix);
    }

    ~SuperILU()
    {
    }
    
    /** Performs a symbolic decomposition on the sparcity of \a matrix.
      *
      * This function is particularly useful when solving for several problems having the same structure.
      * 
      * \sa factorize()
      */
    void analyzePattern(const MatrixType& matrix)
    {
      Base::analyzePattern(matrix);
    }
    
    /** Performs a numeric decomposition of \a matrix
      *
      * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
      *
      * \sa analyzePattern()
      */
    void factorize(const MatrixType& matrix);
    
    #ifndef EIGEN_PARSED_BY_DOXYGEN
    /** \internal */
    template<typename Rhs,typename Dest>
    void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const;
    #endif // EIGEN_PARSED_BY_DOXYGEN
    
  protected:
    
    using Base::m_matrix;
    using Base::m_sluOptions;
    using Base::m_sluA;
    using Base::m_sluB;
    using Base::m_sluX;
    using Base::m_p;
    using Base::m_q;
    using Base::m_sluEtree;
    using Base::m_sluEqued;
    using Base::m_sluRscale;
    using Base::m_sluCscale;
    using Base::m_sluL;
    using Base::m_sluU;
    using Base::m_sluStat;
    using Base::m_sluFerr;
    using Base::m_sluBerr;
    using Base::m_l;
    using Base::m_u;
    
    using Base::m_analysisIsOk;
    using Base::m_factorizationIsOk;
    using Base::m_extractedDataAreDirty;
    using Base::m_isInitialized;
    using Base::m_info;

    void init()
    {
      Base::init();
      
      ilu_set_default_options(&m_sluOptions);
      m_sluOptions.PrintStat        = NO;
      m_sluOptions.ConditionNumber  = NO;
      m_sluOptions.Trans            = NOTRANS;
      m_sluOptions.ColPerm          = MMD_AT_PLUS_A;
      
      // no attempt to preserve column sum
      m_sluOptions.ILU_MILU = SILU;
      // only basic ILU(k) support -- no direct control over memory consumption
      // better to use ILU_DropRule = DROP_BASIC | DROP_AREA
      // and set ILU_FillFactor to max memory growth
      m_sluOptions.ILU_DropRule = DROP_BASIC;
      m_sluOptions.ILU_DropTol = NumTraits<Scalar>::dummy_precision()*10;
    }
    
  private:
    SuperILU(SuperILU& ) { }
};

template<typename MatrixType>
void SuperILU<MatrixType>::factorize(const MatrixType& a)
{
  eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
  if(!m_analysisIsOk)
  {
    m_info = InvalidInput;
    return;
  }
  
  this->initFactorization(a);

  int info = 0;
  RealScalar recip_pivot_growth, rcond;

  StatInit(&m_sluStat);
  SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
                &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);

  // FIXME how to better check for errors ???
  m_info = info == 0 ? Success : NumericalIssue;
  m_factorizationIsOk = true;
}

template<typename MatrixType>
template<typename Rhs,typename Dest>
void SuperILU<MatrixType>::_solve(const MatrixBase<Rhs> &b, MatrixBase<Dest>& x) const
{
  eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or analyzePattern()/factorize()");

  const int size = m_matrix.rows();
  const int rhsCols = b.cols();
  eigen_assert(size==b.rows());

  m_sluOptions.Trans = NOTRANS;
  m_sluOptions.Fact = FACTORED;
  m_sluOptions.IterRefine = NOREFINE;

  m_sluFerr.resize(rhsCols);
  m_sluBerr.resize(rhsCols);
  m_sluB = SluMatrix::Map(b.const_cast_derived());
  m_sluX = SluMatrix::Map(x.derived());

  typename Rhs::PlainObject b_cpy;
  if(m_sluEqued!='N')
  {
    b_cpy = b;
    m_sluB = SluMatrix::Map(b_cpy.const_cast_derived());  
  }
  
  int info = 0;
  RealScalar recip_pivot_growth, rcond;

  StatInit(&m_sluStat);
  SuperLU_gsisx(&m_sluOptions, &m_sluA,
                m_q.data(), m_p.data(),
                &m_sluEtree[0], &m_sluEqued,
                &m_sluRscale[0], &m_sluCscale[0],
                &m_sluL, &m_sluU,
                NULL, 0,
                &m_sluB, &m_sluX,
                &recip_pivot_growth, &rcond,
                &m_sluStat, &info, Scalar());
  StatFree(&m_sluStat);

  m_info = info==0 ? Success : NumericalIssue;
}
#endif

namespace internal {
  
template<typename _MatrixType, typename Derived, typename Rhs>
struct solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
  : solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
{
  typedef SuperLUBase<_MatrixType,Derived> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec().derived()._solve(rhs(),dst);
  }
};

template<typename _MatrixType, typename Derived, typename Rhs>
struct sparse_solve_retval<SuperLUBase<_MatrixType,Derived>, Rhs>
  : sparse_solve_retval_base<SuperLUBase<_MatrixType,Derived>, Rhs>
{
  typedef SuperLUBase<_MatrixType,Derived> Dec;
  EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec().derived()._solve(rhs(),dst);
  }
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_SUPERLUSUPPORT_H