aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseLU/SparseLU_column_bmod.h
blob: b57f06802e2b78fe8e8a993576a1ab904315f7bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* 
 
 * NOTE: This file is the modified version of xcolumn_bmod.c file in SuperLU 
 
 * -- SuperLU routine (version 3.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * October 15, 2003
 *
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
 * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program for any
 * purpose, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is
 * granted, provided the above notices are retained, and a notice that
 * the code was modified is included with the above copyright notice.
 */
#ifndef SPARSELU_COLUMN_BMOD_H
#define SPARSELU_COLUMN_BMOD_H

namespace Eigen {

namespace internal {
/**
 * \brief Performs numeric block updates (sup-col) in topological order
 * 
 * \param jcol current column to update
 * \param nseg Number of segments in the U part
 * \param dense Store the full representation of the column
 * \param tempv working array 
 * \param segrep segment representative ...
 * \param repfnz ??? First nonzero column in each row ???  ...
 * \param fpanelc First column in the current panel
 * \param glu Global LU data. 
 * \return 0 - successful return 
 *         > 0 - number of bytes allocated when run out of space
 * 
 */
template <typename Scalar, typename StorageIndex>
Index SparseLUImpl<Scalar,StorageIndex>::column_bmod(const Index jcol, const Index nseg, BlockScalarVector dense, ScalarVector& tempv,
                                                     BlockIndexVector segrep, BlockIndexVector repfnz, Index fpanelc, GlobalLU_t& glu)
{
  Index  jsupno, k, ksub, krep, ksupno; 
  Index lptr, nrow, isub, irow, nextlu, new_next, ufirst; 
  Index fsupc, nsupc, nsupr, luptr, kfnz, no_zeros; 
  /* krep = representative of current k-th supernode
    * fsupc =  first supernodal column
    * nsupc = number of columns in a supernode
    * nsupr = number of rows in a supernode
    * luptr = location of supernodal LU-block in storage
    * kfnz = first nonz in the k-th supernodal segment
    * no_zeros = no lf leading zeros in a supernodal U-segment
    */
  
  jsupno = glu.supno(jcol);
  // For each nonzero supernode segment of U[*,j] in topological order 
  k = nseg - 1; 
  Index d_fsupc; // distance between the first column of the current panel and the 
               // first column of the current snode
  Index fst_col; // First column within small LU update
  Index segsize; 
  for (ksub = 0; ksub < nseg; ksub++)
  {
    krep = segrep(k); k--; 
    ksupno = glu.supno(krep); 
    if (jsupno != ksupno )
    {
      // outside the rectangular supernode 
      fsupc = glu.xsup(ksupno); 
      fst_col = (std::max)(fsupc, fpanelc); 
      
      // Distance from the current supernode to the current panel; 
      // d_fsupc = 0 if fsupc > fpanelc
      d_fsupc = fst_col - fsupc; 
      
      luptr = glu.xlusup(fst_col) + d_fsupc; 
      lptr = glu.xlsub(fsupc) + d_fsupc; 
      
      kfnz = repfnz(krep); 
      kfnz = (std::max)(kfnz, fpanelc); 
      
      segsize = krep - kfnz + 1; 
      nsupc = krep - fst_col + 1; 
      nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); 
      nrow = nsupr - d_fsupc - nsupc;
      Index lda = glu.xlusup(fst_col+1) - glu.xlusup(fst_col);
      
      
      // Perform a triangular solver and block update, 
      // then scatter the result of sup-col update to dense
      no_zeros = kfnz - fst_col; 
      if(segsize==1)
        LU_kernel_bmod<1>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
      else
        LU_kernel_bmod<Dynamic>::run(segsize, dense, tempv, glu.lusup, luptr, lda, nrow, glu.lsub, lptr, no_zeros);
    } // end if jsupno 
  } // end for each segment
  
  // Process the supernodal portion of  L\U[*,j]
  nextlu = glu.xlusup(jcol); 
  fsupc = glu.xsup(jsupno);
  
  // copy the SPA dense into L\U[*,j]
  Index mem; 
  new_next = nextlu + glu.xlsub(fsupc + 1) - glu.xlsub(fsupc); 
  Index offset = internal::first_multiple<Index>(new_next, internal::packet_traits<Scalar>::size) - new_next;
  if(offset)
    new_next += offset;
  while (new_next > glu.nzlumax )
  {
    mem = memXpand<ScalarVector>(glu.lusup, glu.nzlumax, nextlu, LUSUP, glu.num_expansions);  
    if (mem) return mem; 
  }
  
  for (isub = glu.xlsub(fsupc); isub < glu.xlsub(fsupc+1); isub++)
  {
    irow = glu.lsub(isub);
    glu.lusup(nextlu) = dense(irow);
    dense(irow) = Scalar(0.0); 
    ++nextlu; 
  }
  
  if(offset)
  {
    glu.lusup.segment(nextlu,offset).setZero();
    nextlu += offset;
  }
  glu.xlusup(jcol + 1) = StorageIndex(nextlu);  // close L\U(*,jcol); 
  
  /* For more updates within the panel (also within the current supernode),
   * should start from the first column of the panel, or the first column
   * of the supernode, whichever is bigger. There are two cases:
   *  1) fsupc < fpanelc, then fst_col <-- fpanelc
   *  2) fsupc >= fpanelc, then fst_col <-- fsupc
   */
  fst_col = (std::max)(fsupc, fpanelc); 
  
  if (fst_col  < jcol)
  {
    // Distance between the current supernode and the current panel
    // d_fsupc = 0 if fsupc >= fpanelc
    d_fsupc = fst_col - fsupc; 
    
    lptr = glu.xlsub(fsupc) + d_fsupc; 
    luptr = glu.xlusup(fst_col) + d_fsupc; 
    nsupr = glu.xlsub(fsupc+1) - glu.xlsub(fsupc); // leading dimension
    nsupc = jcol - fst_col; // excluding jcol 
    nrow = nsupr - d_fsupc - nsupc; 
    
    // points to the beginning of jcol in snode L\U(jsupno) 
    ufirst = glu.xlusup(jcol) + d_fsupc; 
    Index lda = glu.xlusup(jcol+1) - glu.xlusup(jcol);
    MappedMatrixBlock A( &(glu.lusup.data()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
    VectorBlock<ScalarVector> u(glu.lusup, ufirst, nsupc); 
    u = A.template triangularView<UnitLower>().solve(u); 
    
    new (&A) MappedMatrixBlock ( &(glu.lusup.data()[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
    VectorBlock<ScalarVector> l(glu.lusup, ufirst+nsupc, nrow); 
    l.noalias() -= A * u;
    
  } // End if fst_col
  return 0; 
}

} // end namespace internal
} // end namespace Eigen

#endif // SPARSELU_COLUMN_BMOD_H