1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
#define EIGEN_SPARSELU_SUPERNODAL_MATRIX_H
namespace Eigen {
namespace internal {
/** \ingroup SparseLU_Module
* \brief a class to manipulate the L supernodal factor from the SparseLU factorization
*
* This class contain the data to easily store
* and manipulate the supernodes during the factorization and solution phase of Sparse LU.
* Only the lower triangular matrix has supernodes.
*
* NOTE : This class corresponds to the SCformat structure in SuperLU
*
*/
/* TODO
* InnerIterator as for sparsematrix
* SuperInnerIterator to iterate through all supernodes
* Function for triangular solve
*/
template <typename _Scalar, typename _StorageIndex>
class MappedSuperNodalMatrix
{
public:
typedef _Scalar Scalar;
typedef _StorageIndex StorageIndex;
typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
typedef Matrix<Scalar,Dynamic,1> ScalarVector;
public:
MappedSuperNodalMatrix()
{
}
MappedSuperNodalMatrix(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
setInfos(m, n, nzval, nzval_colptr, rowind, rowind_colptr, col_to_sup, sup_to_col);
}
~MappedSuperNodalMatrix()
{
}
/**
* Set appropriate pointers for the lower triangular supernodal matrix
* These infos are available at the end of the numerical factorization
* FIXME This class will be modified such that it can be use in the course
* of the factorization.
*/
void setInfos(Index m, Index n, ScalarVector& nzval, IndexVector& nzval_colptr, IndexVector& rowind,
IndexVector& rowind_colptr, IndexVector& col_to_sup, IndexVector& sup_to_col )
{
m_row = m;
m_col = n;
m_nzval = nzval.data();
m_nzval_colptr = nzval_colptr.data();
m_rowind = rowind.data();
m_rowind_colptr = rowind_colptr.data();
m_nsuper = col_to_sup(n);
m_col_to_sup = col_to_sup.data();
m_sup_to_col = sup_to_col.data();
}
/**
* Number of rows
*/
Index rows() const { return m_row; }
/**
* Number of columns
*/
Index cols() const { return m_col; }
/**
* Return the array of nonzero values packed by column
*
* The size is nnz
*/
Scalar* valuePtr() { return m_nzval; }
const Scalar* valuePtr() const
{
return m_nzval;
}
/**
* Return the pointers to the beginning of each column in \ref valuePtr()
*/
StorageIndex* colIndexPtr()
{
return m_nzval_colptr;
}
const StorageIndex* colIndexPtr() const
{
return m_nzval_colptr;
}
/**
* Return the array of compressed row indices of all supernodes
*/
StorageIndex* rowIndex() { return m_rowind; }
const StorageIndex* rowIndex() const
{
return m_rowind;
}
/**
* Return the location in \em rowvaluePtr() which starts each column
*/
StorageIndex* rowIndexPtr() { return m_rowind_colptr; }
const StorageIndex* rowIndexPtr() const
{
return m_rowind_colptr;
}
/**
* Return the array of column-to-supernode mapping
*/
StorageIndex* colToSup() { return m_col_to_sup; }
const StorageIndex* colToSup() const
{
return m_col_to_sup;
}
/**
* Return the array of supernode-to-column mapping
*/
StorageIndex* supToCol() { return m_sup_to_col; }
const StorageIndex* supToCol() const
{
return m_sup_to_col;
}
/**
* Return the number of supernodes
*/
Index nsuper() const
{
return m_nsuper;
}
class InnerIterator;
template<typename Dest>
void solveInPlace( MatrixBase<Dest>&X) const;
protected:
Index m_row; // Number of rows
Index m_col; // Number of columns
Index m_nsuper; // Number of supernodes
Scalar* m_nzval; //array of nonzero values packed by column
StorageIndex* m_nzval_colptr; //nzval_colptr[j] Stores the location in nzval[] which starts column j
StorageIndex* m_rowind; // Array of compressed row indices of rectangular supernodes
StorageIndex* m_rowind_colptr; //rowind_colptr[j] stores the location in rowind[] which starts column j
StorageIndex* m_col_to_sup; // col_to_sup[j] is the supernode number to which column j belongs
StorageIndex* m_sup_to_col; //sup_to_col[s] points to the starting column of the s-th supernode
private :
};
/**
* \brief InnerIterator class to iterate over nonzero values of the current column in the supernodal matrix L
*
*/
template<typename Scalar, typename StorageIndex>
class MappedSuperNodalMatrix<Scalar,StorageIndex>::InnerIterator
{
public:
InnerIterator(const MappedSuperNodalMatrix& mat, Index outer)
: m_matrix(mat),
m_outer(outer),
m_supno(mat.colToSup()[outer]),
m_idval(mat.colIndexPtr()[outer]),
m_startidval(m_idval),
m_endidval(mat.colIndexPtr()[outer+1]),
m_idrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]]),
m_endidrow(mat.rowIndexPtr()[mat.supToCol()[mat.colToSup()[outer]]+1])
{}
inline InnerIterator& operator++()
{
m_idval++;
m_idrow++;
return *this;
}
inline Scalar value() const { return m_matrix.valuePtr()[m_idval]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_idval]); }
inline Index index() const { return m_matrix.rowIndex()[m_idrow]; }
inline Index row() const { return index(); }
inline Index col() const { return m_outer; }
inline Index supIndex() const { return m_supno; }
inline operator bool() const
{
return ( (m_idval < m_endidval) && (m_idval >= m_startidval)
&& (m_idrow < m_endidrow) );
}
protected:
const MappedSuperNodalMatrix& m_matrix; // Supernodal lower triangular matrix
const Index m_outer; // Current column
const Index m_supno; // Current SuperNode number
Index m_idval; // Index to browse the values in the current column
const Index m_startidval; // Start of the column value
const Index m_endidval; // End of the column value
Index m_idrow; // Index to browse the row indices
Index m_endidrow; // End index of row indices of the current column
};
/**
* \brief Solve with the supernode triangular matrix
*
*/
template<typename Scalar, typename Index_>
template<typename Dest>
void MappedSuperNodalMatrix<Scalar,Index_>::solveInPlace( MatrixBase<Dest>&X) const
{
/* Explicit type conversion as the Index type of MatrixBase<Dest> may be wider than Index */
// eigen_assert(X.rows() <= NumTraits<Index>::highest());
// eigen_assert(X.cols() <= NumTraits<Index>::highest());
Index n = int(X.rows());
Index nrhs = Index(X.cols());
const Scalar * Lval = valuePtr(); // Nonzero values
Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor> work(n, nrhs); // working vector
work.setZero();
for (Index k = 0; k <= nsuper(); k ++)
{
Index fsupc = supToCol()[k]; // First column of the current supernode
Index istart = rowIndexPtr()[fsupc]; // Pointer index to the subscript of the current column
Index nsupr = rowIndexPtr()[fsupc+1] - istart; // Number of rows in the current supernode
Index nsupc = supToCol()[k+1] - fsupc; // Number of columns in the current supernode
Index nrow = nsupr - nsupc; // Number of rows in the non-diagonal part of the supernode
Index irow; //Current index row
if (nsupc == 1 )
{
for (Index j = 0; j < nrhs; j++)
{
InnerIterator it(*this, fsupc);
++it; // Skip the diagonal element
for (; it; ++it)
{
irow = it.row();
X(irow, j) -= X(fsupc, j) * it.value();
}
}
}
else
{
// The supernode has more than one column
Index luptr = colIndexPtr()[fsupc];
Index lda = colIndexPtr()[fsupc+1] - luptr;
// Triangular solve
Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(Lval[luptr]), nsupc, nsupc, OuterStride<>(lda) );
Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
U = A.template triangularView<UnitLower>().solve(U);
// Matrix-vector product
new (&A) Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > ( &(Lval[luptr+nsupc]), nrow, nsupc, OuterStride<>(lda) );
work.topRows(nrow).noalias() = A * U;
//Begin Scatter
for (Index j = 0; j < nrhs; j++)
{
Index iptr = istart + nsupc;
for (Index i = 0; i < nrow; i++)
{
irow = rowIndex()[iptr];
X(irow, j) -= work(i, j); // Scatter operation
work(i, j) = Scalar(0);
iptr++;
}
}
}
}
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSELU_MATRIX_H
|