aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseLU/SparseLU_Memory.h
blob: 6e0fc658d67d6df128b5dfe67ddfc07521ef21c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

/* 
 
 * NOTE: This file is the modified version of [s,d,c,z]memory.c files in SuperLU 
 
 * -- SuperLU routine (version 3.1) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * August 1, 2008
 *
 * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
 * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 * Permission is hereby granted to use or copy this program for any
 * purpose, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is
 * granted, provided the above notices are retained, and a notice that
 * the code was modified is included with the above copyright notice.
 */

#ifndef EIGEN_SPARSELU_MEMORY
#define EIGEN_SPARSELU_MEMORY

#define LU_Reduce(alpha) ((alpha + 1) / 2) // i.e (alpha-1)/2 + 1
#define LU_GluIntArray(n) (5* (n) + 5)
#define LU_TempSpace(m, w) ( (2*w + 4 + LU_NO_MARKER) * m * sizeof(Index) \
                                  + (w + 1) * m * sizeof(Scalar)
namespace internal {
  
/* Allocate various working space needed in the numerical factorization phase.
 * m_work : space fot the output data structures (lwork is the size)
 * m_Glu: persistent data to facilitate multiple factors : is it really necessary ??
 * NOTE Unlike SuperLU, this routine does not allow the user to provide the size to allocate 
 * nor it return an estimated amount of space required.
 * 
 * Useful  variables :
 * -  m_fillratio : Ratio of fill expected 
 * - lwork = -1 : return an estimated size of the required memory
 *           = 0 : Estimate and allocate the memory
 */
template <typename Scalar,typename Index>
int SparseLU::LUMemInit(int lwork)
{
  int iword = sizeof(Index); 
  int dword = sizeof(Scalar);
  int n = m_Glu.n = m_mat.cols();
  int m = m_mat.rows();
  m_Glu.num_expansions = 0; // No memory expansions so far ??
  int estimated_size;
  
  
  if (!m_Glu.expanders)
    m_Glu.expanders = new ExpHeader(NO_MEMTYPE); 
  
  if (m_fact_t != SamePattern_SameRowPerm) // Create space for a new factorization
  { 
    // Guess the size for L\U factors 
    int annz = m_mat.nonZeros();
    int nzlmax, nzumax, nzlumax; 
    nzumax = nzlumax = m_fillratio * annz; // ???
    nzlmax  = std::max(1, m_fill_ratio/4.) * annz; //???
  
    // Return the estimated size to the user if necessary
    if (lwork = -1) 
    {
      estimated_size = LU_GluIntArray(n) * iword + LU_TempSpace(m, m_panel_size)
                      + (nzlmax + nzumax) * iword + (nzlumax+nzumax) * dword + n); 
      return estimated_size;
    }
    
    // Setup the required space 
    // NOTE: In SuperLU, there is an option to let the user provide its own space.
    
    // Allocate Integer pointers for L\U factors.resize(n+1);
    m_Glu.supno.resize(n+1);
    m_Glu.xlsub.resize(n+1);
    m_Glu.xlusup.resize(n+1);
    m_Glu.xusub.resize(n+1);
  
    // Reserve memory for L/U factors
    m_Glu.lusup = internal::expand<Scalar>(nzlumax, LUSUP, 0, 0, m_Glu); 
    m_Glu.ucol = internal::expand<Scalar>(nzumax, UCOL, 0, 0, m_Glu); 
    m_Glu.lsub = internal::expand<Index>(nzlmax, LSUB, 0, 0, m_Glu); 
    m_Glu.usub = internal::expand<Index>(nzumax, USUB, 0, 1, m_Glu); 
    
    // Check if the memory is correctly allocated, 
    while ( !m_Glu.lusup || !m_Glu.ucol || !m_Glu.lsub || !m_Glu.usub)
    {
      //otherwise reduce the estimated size and retry
      delete [] m_Glu.lusup; 
      delete [] m_Glu.ucol;
      delete [] m_Glu.lsub;
      delete [] m_Glu.usub;
      
      nzlumax /= 2;
      nzumax /= 2;
      nzlmax /= 2;
      eigen_assert (nzlumax > annz && "Not enough memory to perform factorization");
      
      m_Glu.lusup = internal::expand<Scalar>(nzlumax, LUSUP, 0, 0, m_Glu); 
      m_Glu.ucol = internal::expand<Scalar>(nzumax, UCOL, 0, 0, m_Glu); 
      m_Glu.lsub = internal::expand<Index>(nzlmax, LSUB, 0, 0, m_Glu); 
      m_Glu.usub = internal::expand<Index>(nzumax, USUB, 0, 1, m_Glu); 
    }
  }
  else  // m_fact == SamePattern_SameRowPerm;
  {
    if (lwork = -1) 
    {
      estimated_size = LU_GluIntArray(n) * iword + LU_TempSpace(m, m_panel_size)
                      + (Glu.nzlmax + Glu.nzumax) * iword + (Glu.nzlumax+Glu.nzumax) * dword + n); 
      return estimated_size;
    }
    //  Use existing space from previous factorization
    // Unlike in SuperLU, this should not  be necessary here since m_Glu is persistent as a member of the class
    m_Glu.xsup = m_Lstore.sup_to_col; 
    m_Glu.supno = m_Lstore.col_to_sup;
    m_Glu.xlsub = m_Lstore.rowind_colptr;
    m_Glu.xlusup = m_Lstore.nzval_colptr;
    xusub = m_Ustore.outerIndexPtr();
    
    m_Glu.expanders[LSUB].size = m_Glu.nzlmax; // Maximum value from previous factorization
    m_Glu.expanders[LUSUP].size = m_Glu.nzlumax;
    m_Glu.expanders[USUB].size = GLu.nzumax;
    m_Glu.expanders[UCOL].size = m_Glu.nzumax;
    m_Glu.lsub = GLu.expanders[LSUB].mem = m_Lstore.rowind;
    m_Glu.lusup = GLu.expanders[LUSUP].mem = m_Lstore.nzval;
    GLu.usub = m_Glu.expanders[USUB].mem = m_Ustore.InnerIndexPtr();
    m_Glu.ucol = m_Glu.expanders[UCOL].mem = m_Ustore.valuePtr();
  }
  
  // LUWorkInit : Now, allocate known working storage
  int isize = (2 * m_panel_size + 3 + LU_NO_MARKER) * m + n;
  int dsize = m * m_panel_size + LU_NUM_TEMPV(m, m_panel_size, m_maxsuper, m_rowblk); 
  m_iwork = new Index(isize);
  eigen_assert( (m_iwork != 0) && "Malloc fails for iwork");
  m_work = new Scalar(dsize);
  eigen_assert( (m_work != 0) && "Malloc fails for dwork");
  
  ++m_Glu.num_expansions;
  return 0;
} // end LuMemInit

/** 
  * Expand the existing storage to accomodate more fill-ins
  */
template <typename DestType >
DestType* SparseLU::expand(int& prev_len, // Length from previous call
        MemType type, // Which part of the memory to expand
        int len_to_copy, // Size of the memory to be copied to new store
        int keep_prev) // = 1: use prev_len; Do not expand this vector
                      // = 0: compute new_len to expand)
{
  
  float alpha = 1.5; // Ratio of the memory increase 
  int new_len; // New size of the allocated memory
  if(m_Glu.num_expansions == 0 || keep_prev) 
    new_len = prev_len;
  else 
    new_len = alpha * prev_len;
  
  // Allocate new space 
  DestType *new_mem, *old_mem; 
  new_mem = new DestType(new_len); 
  if ( m_Glu.num_expansions != 0 ) // The memory has been expanded before
  {
    int tries = 0; 
    if (keep_prev) 
    {
      if (!new_mem) return 0; 
    }
    else 
    {
      while ( !new_mem)
      {
        // Reduce the size and allocate again
        if ( ++tries > 10) return 0; 
        alpha = LU_Reduce(alpha); 
        new_len = alpha * prev_len; 
        new_mem = new DestType(new_len);
      }
    } // keep_prev
    //Copy the previous values to the newly allocated space 
    ExpHeader<DestType>* expanders = m_Glu.expanders;
    std::memcpy(new_mem, expanders[type].mem, len_to_copy); 
    delete [] expanders[type].mem; 
  }
  expanders[type].mem = new_mem; 
  expanders[type].size = new_len;
  prev_len = new_len;
  if(m_Glu.num_expansions) ++m_Glu.num_expansions;
  return expanders[type].mem; 
}

/** 
 * \brief Expand the existing storage 
 * 
 * NOTE: The calling sequence of this function is different from that of SuperLU
 * 
 * \return a pointer to the newly allocated space
 */
template <typename DestType>
DestType* SparseLU::LUMemXpand(int jcol, int next, MemType mem_type, int& maxlen)
{
  DestType *newmem; 
  if (memtype == USUB)
    new_mem = expand<DestType>(maxlen, mem_type, next, 1);
  else
    new_mem = expand<DestType>(maxlen, mem_type, next, 0);
  eigen_assert(new_mem && "Can't expand memory");
  
  return new_mem;
  
}
    
}// Namespace Internal
#endif