1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H
#define EIGEN_SPARSE_SELFADJOINTVIEW_H
namespace Eigen {
/** \ingroup SparseCore_Module
* \class SparseSelfAdjointView
*
* \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix.
*
* \param MatrixType the type of the dense matrix storing the coefficients
* \param Mode can be either \c #Lower or \c #Upper
*
* This class is an expression of a sefladjoint matrix from a triangular part of a matrix
* with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView()
* and most of the time this is the only way that it is used.
*
* \sa SparseMatrixBase::selfadjointView()
*/
namespace internal {
template<typename MatrixType, unsigned int Mode>
struct traits<SparseSelfAdjointView<MatrixType,Mode> > : traits<MatrixType> {
};
template<int SrcMode,int DstMode,typename MatrixType,int DestOrder>
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
template<int Mode,typename MatrixType,int DestOrder>
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm = 0);
}
template<typename MatrixType, unsigned int _Mode> class SparseSelfAdjointView
: public EigenBase<SparseSelfAdjointView<MatrixType,_Mode> >
{
public:
enum {
Mode = _Mode,
TransposeMode = ((Mode & Upper) ? Lower : 0) | ((Mode & Lower) ? Upper : 0),
RowsAtCompileTime = internal::traits<SparseSelfAdjointView>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<SparseSelfAdjointView>::ColsAtCompileTime
};
typedef EigenBase<SparseSelfAdjointView> Base;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef typename internal::ref_selector<MatrixType>::non_const_type MatrixTypeNested;
typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested;
explicit inline SparseSelfAdjointView(MatrixType& matrix) : m_matrix(matrix)
{
eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices");
}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
/** \internal \returns a reference to the nested matrix */
const _MatrixTypeNested& matrix() const { return m_matrix; }
typename internal::remove_reference<MatrixTypeNested>::type& matrix() { return m_matrix; }
/** \returns an expression of the matrix product between a sparse self-adjoint matrix \c *this and a sparse matrix \a rhs.
*
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
*/
template<typename OtherDerived>
Product<SparseSelfAdjointView, OtherDerived>
operator*(const SparseMatrixBase<OtherDerived>& rhs) const
{
return Product<SparseSelfAdjointView, OtherDerived>(*this, rhs.derived());
}
/** \returns an expression of the matrix product between a sparse matrix \a lhs and a sparse self-adjoint matrix \a rhs.
*
* Note that there is no algorithmic advantage of performing such a product compared to a general sparse-sparse matrix product.
* Indeed, the SparseSelfadjointView operand is first copied into a temporary SparseMatrix before computing the product.
*/
template<typename OtherDerived> friend
Product<OtherDerived, SparseSelfAdjointView>
operator*(const SparseMatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
{
return Product<OtherDerived, SparseSelfAdjointView>(lhs.derived(), rhs);
}
/** Efficient sparse self-adjoint matrix times dense vector/matrix product */
template<typename OtherDerived>
Product<SparseSelfAdjointView,OtherDerived>
operator*(const MatrixBase<OtherDerived>& rhs) const
{
return Product<SparseSelfAdjointView,OtherDerived>(*this, rhs.derived());
}
/** Efficient dense vector/matrix times sparse self-adjoint matrix product */
template<typename OtherDerived> friend
Product<OtherDerived,SparseSelfAdjointView>
operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs)
{
return Product<OtherDerived,SparseSelfAdjointView>(lhs.derived(), rhs);
}
/** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
* \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix.
*
* \returns a reference to \c *this
*
* To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply
* call this function with u.adjoint().
*/
template<typename DerivedU>
SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha = Scalar(1));
/** \returns an expression of P H P^-1 */
// TODO implement twists in a more evaluator friendly fashion
SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode> twistedBy(const PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm) const
{
return SparseSymmetricPermutationProduct<_MatrixTypeNested,Mode>(m_matrix, perm);
}
template<typename SrcMatrixType,int SrcMode>
SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcMode>& permutedMatrix)
{
internal::call_assignment_no_alias_no_transpose(*this, permutedMatrix);
return *this;
}
SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src)
{
PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
return *this = src.twistedBy(pnull);
}
template<typename SrcMatrixType,unsigned int SrcMode>
SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcMode>& src)
{
PermutationMatrix<Dynamic,Dynamic,StorageIndex> pnull;
return *this = src.twistedBy(pnull);
}
void resize(Index rows, Index cols)
{
EIGEN_ONLY_USED_FOR_DEBUG(rows);
EIGEN_ONLY_USED_FOR_DEBUG(cols);
eigen_assert(rows == this->rows() && cols == this->cols()
&& "SparseSelfadjointView::resize() does not actually allow to resize.");
}
protected:
MatrixTypeNested m_matrix;
//mutable VectorI m_countPerRow;
//mutable VectorI m_countPerCol;
private:
template<typename Dest> void evalTo(Dest &) const;
};
/***************************************************************************
* Implementation of SparseMatrixBase methods
***************************************************************************/
template<typename Derived>
template<unsigned int UpLo>
typename SparseMatrixBase<Derived>::template ConstSelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView() const
{
return SparseSelfAdjointView<const Derived, UpLo>(derived());
}
template<typename Derived>
template<unsigned int UpLo>
typename SparseMatrixBase<Derived>::template SelfAdjointViewReturnType<UpLo>::Type SparseMatrixBase<Derived>::selfadjointView()
{
return SparseSelfAdjointView<Derived, UpLo>(derived());
}
/***************************************************************************
* Implementation of SparseSelfAdjointView methods
***************************************************************************/
template<typename MatrixType, unsigned int Mode>
template<typename DerivedU>
SparseSelfAdjointView<MatrixType,Mode>&
SparseSelfAdjointView<MatrixType,Mode>::rankUpdate(const SparseMatrixBase<DerivedU>& u, const Scalar& alpha)
{
SparseMatrix<Scalar,(MatrixType::Flags&RowMajorBit)?RowMajor:ColMajor> tmp = u * u.adjoint();
if(alpha==Scalar(0))
m_matrix = tmp.template triangularView<Mode>();
else
m_matrix += alpha * tmp.template triangularView<Mode>();
return *this;
}
namespace internal {
// TODO currently a selfadjoint expression has the form SelfAdjointView<.,.>
// in the future selfadjoint-ness should be defined by the expression traits
// such that Transpose<SelfAdjointView<.,.> > is valid. (currently TriangularBase::transpose() is overloaded to make it work)
template<typename MatrixType, unsigned int Mode>
struct evaluator_traits<SparseSelfAdjointView<MatrixType,Mode> >
{
typedef typename storage_kind_to_evaluator_kind<typename MatrixType::StorageKind>::Kind Kind;
typedef SparseSelfAdjointShape Shape;
};
struct SparseSelfAdjoint2Sparse {};
template<> struct AssignmentKind<SparseShape,SparseSelfAdjointShape> { typedef SparseSelfAdjoint2Sparse Kind; };
template<> struct AssignmentKind<SparseSelfAdjointShape,SparseShape> { typedef Sparse2Sparse Kind; };
template< typename DstXprType, typename SrcXprType, typename Functor>
struct Assignment<DstXprType, SrcXprType, Functor, SparseSelfAdjoint2Sparse>
{
typedef typename DstXprType::StorageIndex StorageIndex;
typedef internal::assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar> AssignOpType;
template<typename DestScalar,int StorageOrder>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignOpType&/*func*/)
{
internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), dst);
}
// FIXME: the handling of += and -= in sparse matrices should be cleanup so that next two overloads could be reduced to:
template<typename DestScalar,int StorageOrder,typename AssignFunc>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src, const AssignFunc& func)
{
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
run(tmp, src, AssignOpType());
call_assignment_no_alias_no_transpose(dst, tmp, func);
}
template<typename DestScalar,int StorageOrder>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
const internal::add_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
{
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
run(tmp, src, AssignOpType());
dst += tmp;
}
template<typename DestScalar,int StorageOrder>
static void run(SparseMatrix<DestScalar,StorageOrder,StorageIndex> &dst, const SrcXprType &src,
const internal::sub_assign_op<typename DstXprType::Scalar,typename SrcXprType::Scalar>& /* func */)
{
SparseMatrix<DestScalar,StorageOrder,StorageIndex> tmp(src.rows(),src.cols());
run(tmp, src, AssignOpType());
dst -= tmp;
}
template<typename DestScalar>
static void run(DynamicSparseMatrix<DestScalar,ColMajor,StorageIndex>& dst, const SrcXprType &src, const AssignOpType&/*func*/)
{
// TODO directly evaluate into dst;
SparseMatrix<DestScalar,ColMajor,StorageIndex> tmp(dst.rows(),dst.cols());
internal::permute_symm_to_fullsymm<SrcXprType::Mode>(src.matrix(), tmp);
dst = tmp;
}
};
} // end namespace internal
/***************************************************************************
* Implementation of sparse self-adjoint time dense matrix
***************************************************************************/
namespace internal {
template<int Mode, typename SparseLhsType, typename DenseRhsType, typename DenseResType, typename AlphaType>
inline void sparse_selfadjoint_time_dense_product(const SparseLhsType& lhs, const DenseRhsType& rhs, DenseResType& res, const AlphaType& alpha)
{
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
typedef typename internal::nested_eval<SparseLhsType,DenseRhsType::MaxColsAtCompileTime>::type SparseLhsTypeNested;
typedef typename internal::remove_all<SparseLhsTypeNested>::type SparseLhsTypeNestedCleaned;
typedef evaluator<SparseLhsTypeNestedCleaned> LhsEval;
typedef typename LhsEval::InnerIterator LhsIterator;
typedef typename SparseLhsType::Scalar LhsScalar;
enum {
LhsIsRowMajor = (LhsEval::Flags&RowMajorBit)==RowMajorBit,
ProcessFirstHalf =
((Mode&(Upper|Lower))==(Upper|Lower))
|| ( (Mode&Upper) && !LhsIsRowMajor)
|| ( (Mode&Lower) && LhsIsRowMajor),
ProcessSecondHalf = !ProcessFirstHalf
};
SparseLhsTypeNested lhs_nested(lhs);
LhsEval lhsEval(lhs_nested);
// work on one column at once
for (Index k=0; k<rhs.cols(); ++k)
{
for (Index j=0; j<lhs.outerSize(); ++j)
{
LhsIterator i(lhsEval,j);
// handle diagonal coeff
if (ProcessSecondHalf)
{
while (i && i.index()<j) ++i;
if(i && i.index()==j)
{
res(j,k) += alpha * i.value() * rhs(j,k);
++i;
}
}
// premultiplied rhs for scatters
typename ScalarBinaryOpTraits<AlphaType, typename DenseRhsType::Scalar>::ReturnType rhs_j(alpha*rhs(j,k));
// accumulator for partial scalar product
typename DenseResType::Scalar res_j(0);
for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i)
{
LhsScalar lhs_ij = i.value();
if(!LhsIsRowMajor) lhs_ij = numext::conj(lhs_ij);
res_j += lhs_ij * rhs(i.index(),k);
res(i.index(),k) += numext::conj(lhs_ij) * rhs_j;
}
res(j,k) += alpha * res_j;
// handle diagonal coeff
if (ProcessFirstHalf && i && (i.index()==j))
res(j,k) += alpha * i.value() * rhs(j,k);
}
}
}
template<typename LhsView, typename Rhs, int ProductType>
struct generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType>
: generic_product_impl_base<LhsView, Rhs, generic_product_impl<LhsView, Rhs, SparseSelfAdjointShape, DenseShape, ProductType> >
{
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const LhsView& lhsView, const Rhs& rhs, const typename Dest::Scalar& alpha)
{
typedef typename LhsView::_MatrixTypeNested Lhs;
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
LhsNested lhsNested(lhsView.matrix());
RhsNested rhsNested(rhs);
internal::sparse_selfadjoint_time_dense_product<LhsView::Mode>(lhsNested, rhsNested, dst, alpha);
}
};
template<typename Lhs, typename RhsView, int ProductType>
struct generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType>
: generic_product_impl_base<Lhs, RhsView, generic_product_impl<Lhs, RhsView, DenseShape, SparseSelfAdjointShape, ProductType> >
{
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const RhsView& rhsView, const typename Dest::Scalar& alpha)
{
typedef typename RhsView::_MatrixTypeNested Rhs;
typedef typename nested_eval<Lhs,Dynamic>::type LhsNested;
typedef typename nested_eval<Rhs,Dynamic>::type RhsNested;
LhsNested lhsNested(lhs);
RhsNested rhsNested(rhsView.matrix());
// transpose everything
Transpose<Dest> dstT(dst);
internal::sparse_selfadjoint_time_dense_product<RhsView::TransposeMode>(rhsNested.transpose(), lhsNested.transpose(), dstT, alpha);
}
};
// NOTE: these two overloads are needed to evaluate the sparse selfadjoint view into a full sparse matrix
// TODO: maybe the copy could be handled by generic_product_impl so that these overloads would not be needed anymore
template<typename LhsView, typename Rhs, int ProductTag>
struct product_evaluator<Product<LhsView, Rhs, DefaultProduct>, ProductTag, SparseSelfAdjointShape, SparseShape>
: public evaluator<typename Product<typename Rhs::PlainObject, Rhs, DefaultProduct>::PlainObject>
{
typedef Product<LhsView, Rhs, DefaultProduct> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
product_evaluator(const XprType& xpr)
: m_lhs(xpr.lhs()), m_result(xpr.rows(), xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
generic_product_impl<typename Rhs::PlainObject, Rhs, SparseShape, SparseShape, ProductTag>::evalTo(m_result, m_lhs, xpr.rhs());
}
protected:
typename Rhs::PlainObject m_lhs;
PlainObject m_result;
};
template<typename Lhs, typename RhsView, int ProductTag>
struct product_evaluator<Product<Lhs, RhsView, DefaultProduct>, ProductTag, SparseShape, SparseSelfAdjointShape>
: public evaluator<typename Product<Lhs, typename Lhs::PlainObject, DefaultProduct>::PlainObject>
{
typedef Product<Lhs, RhsView, DefaultProduct> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
product_evaluator(const XprType& xpr)
: m_rhs(xpr.rhs()), m_result(xpr.rows(), xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
generic_product_impl<Lhs, typename Lhs::PlainObject, SparseShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), m_rhs);
}
protected:
typename Lhs::PlainObject m_rhs;
PlainObject m_result;
};
} // namespace internal
/***************************************************************************
* Implementation of symmetric copies and permutations
***************************************************************************/
namespace internal {
template<int Mode,typename MatrixType,int DestOrder>
void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
{
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::Scalar Scalar;
typedef SparseMatrix<Scalar,DestOrder,StorageIndex> Dest;
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef evaluator<MatrixType> MatEval;
typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
MatEval matEval(mat);
Dest& dest(_dest.derived());
enum {
StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor)
};
Index size = mat.rows();
VectorI count;
count.resize(size);
count.setZero();
dest.resize(size,size);
for(Index j = 0; j<size; ++j)
{
Index jp = perm ? perm[j] : j;
for(MatIterator it(matEval,j); it; ++it)
{
Index i = it.index();
Index r = it.row();
Index c = it.col();
Index ip = perm ? perm[i] : i;
if(Mode==(Upper|Lower))
count[StorageOrderMatch ? jp : ip]++;
else if(r==c)
count[ip]++;
else if(( Mode==Lower && r>c) || ( Mode==Upper && r<c))
{
count[ip]++;
count[jp]++;
}
}
}
Index nnz = count.sum();
// reserve space
dest.resizeNonZeros(nnz);
dest.outerIndexPtr()[0] = 0;
for(Index j=0; j<size; ++j)
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
for(Index j=0; j<size; ++j)
count[j] = dest.outerIndexPtr()[j];
// copy data
for(StorageIndex j = 0; j<size; ++j)
{
for(MatIterator it(matEval,j); it; ++it)
{
StorageIndex i = internal::convert_index<StorageIndex>(it.index());
Index r = it.row();
Index c = it.col();
StorageIndex jp = perm ? perm[j] : j;
StorageIndex ip = perm ? perm[i] : i;
if(Mode==(Upper|Lower))
{
Index k = count[StorageOrderMatch ? jp : ip]++;
dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp;
dest.valuePtr()[k] = it.value();
}
else if(r==c)
{
Index k = count[ip]++;
dest.innerIndexPtr()[k] = ip;
dest.valuePtr()[k] = it.value();
}
else if(( (Mode&Lower)==Lower && r>c) || ( (Mode&Upper)==Upper && r<c))
{
if(!StorageOrderMatch)
std::swap(ip,jp);
Index k = count[jp]++;
dest.innerIndexPtr()[k] = ip;
dest.valuePtr()[k] = it.value();
k = count[ip]++;
dest.innerIndexPtr()[k] = jp;
dest.valuePtr()[k] = numext::conj(it.value());
}
}
}
}
template<int _SrcMode,int _DstMode,typename MatrixType,int DstOrder>
void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::StorageIndex>& _dest, const typename MatrixType::StorageIndex* perm)
{
typedef typename MatrixType::StorageIndex StorageIndex;
typedef typename MatrixType::Scalar Scalar;
SparseMatrix<Scalar,DstOrder,StorageIndex>& dest(_dest.derived());
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef evaluator<MatrixType> MatEval;
typedef typename evaluator<MatrixType>::InnerIterator MatIterator;
enum {
SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor,
StorageOrderMatch = int(SrcOrder) == int(DstOrder),
DstMode = DstOrder==RowMajor ? (_DstMode==Upper ? Lower : Upper) : _DstMode,
SrcMode = SrcOrder==RowMajor ? (_SrcMode==Upper ? Lower : Upper) : _SrcMode
};
MatEval matEval(mat);
Index size = mat.rows();
VectorI count(size);
count.setZero();
dest.resize(size,size);
for(StorageIndex j = 0; j<size; ++j)
{
StorageIndex jp = perm ? perm[j] : j;
for(MatIterator it(matEval,j); it; ++it)
{
StorageIndex i = it.index();
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
continue;
StorageIndex ip = perm ? perm[i] : i;
count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
}
}
dest.outerIndexPtr()[0] = 0;
for(Index j=0; j<size; ++j)
dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j];
dest.resizeNonZeros(dest.outerIndexPtr()[size]);
for(Index j=0; j<size; ++j)
count[j] = dest.outerIndexPtr()[j];
for(StorageIndex j = 0; j<size; ++j)
{
for(MatIterator it(matEval,j); it; ++it)
{
StorageIndex i = it.index();
if((int(SrcMode)==int(Lower) && i<j) || (int(SrcMode)==int(Upper) && i>j))
continue;
StorageIndex jp = perm ? perm[j] : j;
StorageIndex ip = perm? perm[i] : i;
Index k = count[int(DstMode)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++;
dest.innerIndexPtr()[k] = int(DstMode)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp);
if(!StorageOrderMatch) std::swap(ip,jp);
if( ((int(DstMode)==int(Lower) && ip<jp) || (int(DstMode)==int(Upper) && ip>jp)))
dest.valuePtr()[k] = numext::conj(it.value());
else
dest.valuePtr()[k] = it.value();
}
}
}
}
// TODO implement twists in a more evaluator friendly fashion
namespace internal {
template<typename MatrixType, int Mode>
struct traits<SparseSymmetricPermutationProduct<MatrixType,Mode> > : traits<MatrixType> {
};
}
template<typename MatrixType,int Mode>
class SparseSymmetricPermutationProduct
: public EigenBase<SparseSymmetricPermutationProduct<MatrixType,Mode> >
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::StorageIndex StorageIndex;
enum {
RowsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<SparseSymmetricPermutationProduct>::ColsAtCompileTime
};
protected:
typedef PermutationMatrix<Dynamic,Dynamic,StorageIndex> Perm;
public:
typedef Matrix<StorageIndex,Dynamic,1> VectorI;
typedef typename MatrixType::Nested MatrixTypeNested;
typedef typename internal::remove_all<MatrixTypeNested>::type NestedExpression;
SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm)
: m_matrix(mat), m_perm(perm)
{}
inline Index rows() const { return m_matrix.rows(); }
inline Index cols() const { return m_matrix.cols(); }
const NestedExpression& matrix() const { return m_matrix; }
const Perm& perm() const { return m_perm; }
protected:
MatrixTypeNested m_matrix;
const Perm& m_perm;
};
namespace internal {
template<typename DstXprType, typename MatrixType, int Mode, typename Scalar>
struct Assignment<DstXprType, SparseSymmetricPermutationProduct<MatrixType,Mode>, internal::assign_op<Scalar,typename MatrixType::Scalar>, Sparse2Sparse>
{
typedef SparseSymmetricPermutationProduct<MatrixType,Mode> SrcXprType;
typedef typename DstXprType::StorageIndex DstIndex;
template<int Options>
static void run(SparseMatrix<Scalar,Options,DstIndex> &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
{
// internal::permute_symm_to_fullsymm<Mode>(m_matrix,_dest,m_perm.indices().data());
SparseMatrix<Scalar,(Options&RowMajor)==RowMajor ? ColMajor : RowMajor, DstIndex> tmp;
internal::permute_symm_to_fullsymm<Mode>(src.matrix(),tmp,src.perm().indices().data());
dst = tmp;
}
template<typename DestType,unsigned int DestMode>
static void run(SparseSelfAdjointView<DestType,DestMode>& dst, const SrcXprType &src, const internal::assign_op<Scalar,typename MatrixType::Scalar> &)
{
internal::permute_symm_to_symm<Mode,DestMode>(src.matrix(),dst.matrix(),src.perm().indices().data());
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H
|