1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSEPRODUCT_H
#define EIGEN_SPARSEPRODUCT_H
namespace Eigen {
template<typename Lhs, typename Rhs>
struct SparseSparseProductReturnType
{
typedef typename internal::traits<Lhs>::Scalar Scalar;
enum {
LhsRowMajor = internal::traits<Lhs>::Flags & RowMajorBit,
RhsRowMajor = internal::traits<Rhs>::Flags & RowMajorBit,
TransposeRhs = (!LhsRowMajor) && RhsRowMajor,
TransposeLhs = LhsRowMajor && (!RhsRowMajor)
};
typedef typename internal::conditional<TransposeLhs,
SparseMatrix<Scalar,0>,
typename internal::nested<Lhs,Rhs::RowsAtCompileTime>::type>::type LhsNested;
typedef typename internal::conditional<TransposeRhs,
SparseMatrix<Scalar,0>,
typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type>::type RhsNested;
typedef SparseSparseProduct<LhsNested, RhsNested> Type;
};
namespace internal {
template<typename LhsNested, typename RhsNested>
struct traits<SparseSparseProduct<LhsNested, RhsNested> >
{
typedef MatrixXpr XprKind;
// clean the nested types:
typedef typename remove_all<LhsNested>::type _LhsNested;
typedef typename remove_all<RhsNested>::type _RhsNested;
typedef typename _LhsNested::Scalar Scalar;
typedef typename promote_index_type<typename traits<_LhsNested>::Index,
typename traits<_RhsNested>::Index>::type Index;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = _LhsNested::RowsAtCompileTime,
ColsAtCompileTime = _RhsNested::ColsAtCompileTime,
MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime,
MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime,
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime),
EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit),
RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
| EvalBeforeAssigningBit
| EvalBeforeNestingBit,
CoeffReadCost = Dynamic
};
typedef Sparse StorageKind;
};
} // end namespace internal
template<typename LhsNested, typename RhsNested>
class SparseSparseProduct : internal::no_assignment_operator,
public SparseMatrixBase<SparseSparseProduct<LhsNested, RhsNested> >
{
public:
typedef SparseMatrixBase<SparseSparseProduct> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(SparseSparseProduct)
private:
typedef typename internal::traits<SparseSparseProduct>::_LhsNested _LhsNested;
typedef typename internal::traits<SparseSparseProduct>::_RhsNested _RhsNested;
public:
template<typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs), m_tolerance(0), m_conservative(true)
{
init();
}
template<typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE SparseSparseProduct(const Lhs& lhs, const Rhs& rhs, RealScalar tolerance)
: m_lhs(lhs), m_rhs(rhs), m_tolerance(tolerance), m_conservative(false)
{
init();
}
SparseSparseProduct pruned(Scalar reference = 0, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision()) const
{
return SparseSparseProduct(m_lhs,m_rhs,internal::abs(reference)*epsilon);
}
template<typename Dest>
void evalTo(Dest& result) const
{
if(m_conservative)
internal::conservative_sparse_sparse_product_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result);
else
internal::sparse_sparse_product_with_pruning_selector<_LhsNested, _RhsNested, Dest>::run(lhs(),rhs(),result,m_tolerance);
}
EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; }
EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; }
protected:
void init()
{
eigen_assert(m_lhs.cols() == m_rhs.rows());
enum {
ProductIsValid = _LhsNested::ColsAtCompileTime==Dynamic
|| _RhsNested::RowsAtCompileTime==Dynamic
|| int(_LhsNested::ColsAtCompileTime)==int(_RhsNested::RowsAtCompileTime),
AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime,
SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested,_RhsNested)
};
// note to the lost user:
// * for a dot product use: v1.dot(v2)
// * for a coeff-wise product use: v1.cwise()*v2
EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes),
INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS)
EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors),
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
}
LhsNested m_lhs;
RhsNested m_rhs;
RealScalar m_tolerance;
bool m_conservative;
};
// sparse = sparse * sparse
template<typename Derived>
template<typename Lhs, typename Rhs>
inline Derived& SparseMatrixBase<Derived>::operator=(const SparseSparseProduct<Lhs,Rhs>& product)
{
product.evalTo(derived());
return derived();
}
/** \returns an expression of the product of two sparse matrices.
* By default a conservative product preserving the symbolic non zeros is performed.
* The automatic pruning of the small values can be achieved by calling the pruned() function
* in which case a totally different product algorithm is employed:
* \code
* C = (A*B).pruned(); // supress numerical zeros (exact)
* C = (A*B).pruned(ref);
* C = (A*B).pruned(ref,epsilon);
* \endcode
* where \c ref is a meaningful non zero reference value.
* */
template<typename Derived>
template<typename OtherDerived>
inline const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const
{
return typename SparseSparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
}
} // end namespace Eigen
#endif // EIGEN_SPARSEPRODUCT_H
|