aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseCore/SparsePermutation.h
blob: b1f2a283fb2021fb7022181c056d77686b072bc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSE_PERMUTATION_H
#define EIGEN_SPARSE_PERMUTATION_H

// This file implements sparse * permutation products

namespace Eigen { 

namespace internal {

template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct traits<permut_sparsematrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
{
  typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
  typedef typename MatrixTypeNestedCleaned::Scalar Scalar;
  typedef typename MatrixTypeNestedCleaned::Index Index;
  enum {
    SrcStorageOrder = MatrixTypeNestedCleaned::Flags&RowMajorBit ? RowMajor : ColMajor,
    MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight
  };

  typedef typename internal::conditional<MoveOuter,
        SparseMatrix<Scalar,SrcStorageOrder,Index>,
        SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,Index> >::type ReturnType;
};

template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct permut_sparsematrix_product_retval
 : public ReturnByValue<permut_sparsematrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
{
    typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
    typedef typename MatrixTypeNestedCleaned::Scalar Scalar;
    typedef typename MatrixTypeNestedCleaned::Index Index;

    enum {
      SrcStorageOrder = MatrixTypeNestedCleaned::Flags&RowMajorBit ? RowMajor : ColMajor,
      MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight
    };

    permut_sparsematrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
      : m_permutation(perm), m_matrix(matrix)
    {}

    inline int rows() const { return m_matrix.rows(); }
    inline int cols() const { return m_matrix.cols(); }

    template<typename Dest> inline void evalTo(Dest& dst) const
    {
      if(MoveOuter)
      {
        SparseMatrix<Scalar,SrcStorageOrder,Index> tmp(m_matrix.rows(), m_matrix.cols());
        VectorXi sizes(m_matrix.outerSize());
        for(Index j=0; j<m_matrix.outerSize(); ++j)
        {
          Index jp = m_permutation.indices().coeff(j);
          sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = m_matrix.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).size();
        }
        tmp.reserve(sizes);
        for(Index j=0; j<m_matrix.outerSize(); ++j)
        {
          Index jp = m_permutation.indices().coeff(j);
          Index jsrc = ((Side==OnTheRight) ^ Transposed) ? jp : j;
          Index jdst = ((Side==OnTheLeft) ^ Transposed) ? jp : j;
          for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,jsrc); it; ++it)
            tmp.insertByOuterInner(jdst,it.index()) = it.value();
        }
        dst = tmp;
      }
      else
      {
        SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,Index> tmp(m_matrix.rows(), m_matrix.cols());
        VectorXi sizes(tmp.outerSize());
        sizes.setZero();
        PermutationMatrix<Dynamic,Dynamic,Index> perm;
        if((Side==OnTheLeft) ^ Transposed)
          perm = m_permutation;
        else
          perm = m_permutation.transpose();

        for(Index j=0; j<m_matrix.outerSize(); ++j)
          for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,j); it; ++it)
            sizes[perm.indices().coeff(it.index())]++;
        tmp.reserve(sizes);
        for(Index j=0; j<m_matrix.outerSize(); ++j)
          for(typename MatrixTypeNestedCleaned::InnerIterator it(m_matrix,j); it; ++it)
            tmp.insertByOuterInner(perm.indices().coeff(it.index()),j) = it.value();
        dst = tmp;
      }
    }

  protected:
    const PermutationType& m_permutation;
    typename MatrixType::Nested m_matrix;
};

}



/** \returns the matrix with the permutation applied to the columns
  */
template<typename SparseDerived, typename PermDerived>
inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false>
operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm)
{
  return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, false>(perm, matrix.derived());
}

/** \returns the matrix with the permutation applied to the rows
  */
template<typename SparseDerived, typename PermDerived>
inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false>
operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix)
{
  return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, false>(perm, matrix.derived());
}



/** \returns the matrix with the inverse permutation applied to the columns.
  */
template<typename SparseDerived, typename PermDerived>
inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true>
operator*(const SparseMatrixBase<SparseDerived>& matrix, const Transpose<PermutationBase<PermDerived> >& tperm)
{
  return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheRight, true>(tperm.nestedPermutation(), matrix.derived());
}

/** \returns the matrix with the inverse permutation applied to the rows.
  */
template<typename SparseDerived, typename PermDerived>
inline const internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true>
operator*(const Transpose<PermutationBase<PermDerived> >& tperm, const SparseMatrixBase<SparseDerived>& matrix)
{
  return internal::permut_sparsematrix_product_retval<PermutationBase<PermDerived>, SparseDerived, OnTheLeft, true>(tperm.nestedPermutation(), matrix.derived());
}

} // end namespace Eigen

#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H