aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseCore/SparsePermutation.h
blob: ef38357aefd31b35b5c20904119c3d4de3359ce8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSE_PERMUTATION_H
#define EIGEN_SPARSE_PERMUTATION_H

// This file implements sparse * permutation products

namespace Eigen { 

namespace internal {

template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, SparseShape>
{
    typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
    typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;

    typedef typename MatrixTypeCleaned::Scalar Scalar;
    typedef typename MatrixTypeCleaned::StorageIndex StorageIndex;

    enum {
      SrcStorageOrder = MatrixTypeCleaned::Flags&RowMajorBit ? RowMajor : ColMajor,
      MoveOuter = SrcStorageOrder==RowMajor ? Side==OnTheLeft : Side==OnTheRight
    };
    
    typedef typename internal::conditional<MoveOuter,
        SparseMatrix<Scalar,SrcStorageOrder,StorageIndex>,
        SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> >::type ReturnType;

    template<typename Dest,typename PermutationType>
    static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
    {
      MatrixType mat(xpr);
      if(MoveOuter)
      {
        SparseMatrix<Scalar,SrcStorageOrder,StorageIndex> tmp(mat.rows(), mat.cols());
        Matrix<StorageIndex,Dynamic,1> sizes(mat.outerSize());
        for(Index j=0; j<mat.outerSize(); ++j)
        {
          Index jp = perm.indices().coeff(j);
          sizes[((Side==OnTheLeft) ^ Transposed) ? jp : j] = StorageIndex(mat.innerVector(((Side==OnTheRight) ^ Transposed) ? jp : j).nonZeros());
        }
        tmp.reserve(sizes);
        for(Index j=0; j<mat.outerSize(); ++j)
        {
          Index jp = perm.indices().coeff(j);
          Index jsrc = ((Side==OnTheRight) ^ Transposed) ? jp : j;
          Index jdst = ((Side==OnTheLeft) ^ Transposed) ? jp : j;
          for(typename MatrixTypeCleaned::InnerIterator it(mat,jsrc); it; ++it)
            tmp.insertByOuterInner(jdst,it.index()) = it.value();
        }
        dst = tmp;
      }
      else
      {
        SparseMatrix<Scalar,int(SrcStorageOrder)==RowMajor?ColMajor:RowMajor,StorageIndex> tmp(mat.rows(), mat.cols());
        Matrix<StorageIndex,Dynamic,1> sizes(tmp.outerSize());
        sizes.setZero();
        PermutationMatrix<Dynamic,Dynamic,StorageIndex> perm_cpy;
        if((Side==OnTheLeft) ^ Transposed)
          perm_cpy = perm;
        else
          perm_cpy = perm.transpose();

        for(Index j=0; j<mat.outerSize(); ++j)
          for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it)
            sizes[perm_cpy.indices().coeff(it.index())]++;
        tmp.reserve(sizes);
        for(Index j=0; j<mat.outerSize(); ++j)
          for(typename MatrixTypeCleaned::InnerIterator it(mat,j); it; ++it)
            tmp.insertByOuterInner(perm_cpy.indices().coeff(it.index()),j) = it.value();
        dst = tmp;
      }
    }
};

}

namespace internal {

template <int ProductTag> struct product_promote_storage_type<Sparse,             PermutationStorage, ProductTag> { typedef Sparse ret; };
template <int ProductTag> struct product_promote_storage_type<PermutationStorage, Sparse,             ProductTag> { typedef Sparse ret; };

// TODO, the following two overloads are only needed to define the right temporary type through 
// typename traits<permutation_sparse_matrix_product<Rhs,Lhs,OnTheRight,false> >::ReturnType
// whereas it should be correctly handled by traits<Product<> >::PlainObject

template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, PermutationShape, SparseShape>
  : public evaluator<typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType>
{
  typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
  typedef typename permutation_matrix_product<Rhs,OnTheLeft,false,SparseShape>::ReturnType PlainObject;
  typedef evaluator<PlainObject> Base;

  enum {
    Flags = Base::Flags | EvalBeforeNestingBit
  };

  explicit product_evaluator(const XprType& xpr)
    : m_result(xpr.rows(), xpr.cols())
  {
    ::new (static_cast<Base*>(this)) Base(m_result);
    generic_product_impl<Lhs, Rhs, PermutationShape, SparseShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
  }

protected:
  PlainObject m_result;
};

template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, AliasFreeProduct>, ProductTag, SparseShape, PermutationShape >
  : public evaluator<typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType>
{
  typedef Product<Lhs, Rhs, AliasFreeProduct> XprType;
  typedef typename permutation_matrix_product<Lhs,OnTheRight,false,SparseShape>::ReturnType PlainObject;
  typedef evaluator<PlainObject> Base;

  enum {
    Flags = Base::Flags | EvalBeforeNestingBit
  };

  explicit product_evaluator(const XprType& xpr)
    : m_result(xpr.rows(), xpr.cols())
  {
    ::new (static_cast<Base*>(this)) Base(m_result);
    generic_product_impl<Lhs, Rhs, SparseShape, PermutationShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
  }

protected:
  PlainObject m_result;
};

} // end namespace internal

/** \returns the matrix with the permutation applied to the columns
  */
template<typename SparseDerived, typename PermDerived>
inline const Product<SparseDerived, PermDerived, AliasFreeProduct>
operator*(const SparseMatrixBase<SparseDerived>& matrix, const PermutationBase<PermDerived>& perm)
{ return Product<SparseDerived, PermDerived, AliasFreeProduct>(matrix.derived(), perm.derived()); }

/** \returns the matrix with the permutation applied to the rows
  */
template<typename SparseDerived, typename PermDerived>
inline const Product<PermDerived, SparseDerived, AliasFreeProduct>
operator*( const PermutationBase<PermDerived>& perm, const SparseMatrixBase<SparseDerived>& matrix)
{ return  Product<PermDerived, SparseDerived, AliasFreeProduct>(perm.derived(), matrix.derived()); }


/** \returns the matrix with the inverse permutation applied to the columns.
  */
template<typename SparseDerived, typename PermutationType>
inline const Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>
operator*(const SparseMatrixBase<SparseDerived>& matrix, const InverseImpl<PermutationType, PermutationStorage>& tperm)
{
  return Product<SparseDerived, Inverse<PermutationType>, AliasFreeProduct>(matrix.derived(), tperm.derived());
}

/** \returns the matrix with the inverse permutation applied to the rows.
  */
template<typename SparseDerived, typename PermutationType>
inline const Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>
operator*(const InverseImpl<PermutationType,PermutationStorage>& tperm, const SparseMatrixBase<SparseDerived>& matrix)
{
  return Product<Inverse<PermutationType>, SparseDerived, AliasFreeProduct>(tperm.derived(), matrix.derived());
}

} // end namespace Eigen

#endif // EIGEN_SPARSE_SELFADJOINTVIEW_H