1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SPARSEMATRIXBASE_H
#define EIGEN_SPARSEMATRIXBASE_H
namespace Eigen {
/** \ingroup SparseCore_Module
*
* \class SparseMatrixBase
*
* \brief Base class of any sparse matrices or sparse expressions
*
* \tparam Derived
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN.
*/
template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::add_const_on_value_type_if_arithmetic<
typename internal::packet_traits<Scalar>::type
>::type PacketReturnType;
typedef SparseMatrixBase StorageBaseType;
typedef EigenBase<Derived> Base;
template<typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived> &other)
{
other.derived().evalTo(derived());
return derived();
}
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
MaxColsAtCompileTime>::ret),
IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = internal::traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
*/
IsRowMajor = Flags&RowMajorBit ? 1 : 0,
#ifndef EIGEN_PARSED_BY_DOXYGEN
_HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
#endif
};
/** \internal the return type of MatrixBase::adjoint() */
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >,
Transpose<const Derived>
>::type AdjointReturnType;
typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor> PlainObject;
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
*
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
/** \internal the return type of coeff()
*/
typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType;
/** type of the equivalent square matrix */
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN
# include EIGEN_SPARSEMATRIXBASE_PLUGIN
# endif
# undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** \returns the number of rows. \sa cols() */
inline Index rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows() */
inline Index cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is \a rows()*cols().
* \sa rows(), cols(). */
inline Index size() const { return rows() * cols(); }
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline Index nonZeros() const { return derived().nonZeros(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), IsVectorAtCompileTime. */
inline bool isVector() const { return rows()==1 || cols()==1; }
/** \returns the size of the storage major dimension,
* i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
/** \returns the size of the inner dimension according to the storage order,
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
bool isRValue() const { return m_isRValue; }
Derived& markAsRValue() { m_isRValue = true; return derived(); }
SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ }
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& other)
{
other.evalTo(derived());
return derived();
}
template<typename OtherDerived>
inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
{
return assign(other.derived());
}
inline Derived& operator=(const Derived& other)
{
// if (other.isRValue())
// derived().swap(other.const_cast_derived());
// else
return assign(other.derived());
}
protected:
template<typename OtherDerived>
inline Derived& assign(const OtherDerived& other)
{
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
if ((!transpose) && other.isRValue())
{
// eval without temporary
derived().resize(other.rows(), other.cols());
derived().setZero();
derived().reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
derived().startVec(j);
for (typename OtherDerived::InnerIterator it(other, j); it; ++it)
{
Scalar v = it.value();
derived().insertBackByOuterInner(j,it.index()) = v;
}
}
derived().finalize();
}
else
{
assignGeneric(other);
}
return derived();
}
template<typename OtherDerived>
inline void assignGeneric(const OtherDerived& other)
{
//const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
(!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
"the transpose operation is supposed to be handled in SparseMatrix::operator=");
enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };
const Index outerSize = other.outerSize();
//typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
// thanks to shallow copies, we always eval to a tempary
Derived temp(other.rows(), other.cols());
temp.reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
temp.startVec(j);
for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
{
Scalar v = it.value();
temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
}
}
temp.finalize();
derived() = temp.markAsRValue();
}
public:
template<typename Lhs, typename Rhs>
inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product);
friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
{
typedef typename Derived::Nested Nested;
typedef typename internal::remove_all<Nested>::type NestedCleaned;
if (Flags&RowMajorBit)
{
const Nested nm(m.derived());
for (Index row=0; row<nm.outerSize(); ++row)
{
Index col = 0;
for (typename NestedCleaned::InnerIterator it(nm.derived(), row); it; ++it)
{
for ( ; col<it.index(); ++col)
s << "0 ";
s << it.value() << " ";
++col;
}
for ( ; col<m.cols(); ++col)
s << "0 ";
s << std::endl;
}
}
else
{
const Nested nm(m.derived());
if (m.cols() == 1) {
Index row = 0;
for (typename NestedCleaned::InnerIterator it(nm.derived(), 0); it; ++it)
{
for ( ; row<it.index(); ++row)
s << "0" << std::endl;
s << it.value() << std::endl;
++row;
}
for ( ; row<m.rows(); ++row)
s << "0" << std::endl;
}
else
{
SparseMatrix<Scalar, RowMajorBit> trans = m;
s << static_cast<const SparseMatrixBase<SparseMatrix<Scalar, RowMajorBit> >&>(trans);
}
}
return s;
}
template<typename OtherDerived>
Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);
Derived& operator*=(const Scalar& other);
Derived& operator/=(const Scalar& other);
#define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \
CwiseBinaryOp< \
internal::scalar_product_op< \
typename internal::scalar_product_traits< \
typename internal::traits<Derived>::Scalar, \
typename internal::traits<OtherDerived>::Scalar \
>::ReturnType \
>, \
Derived, \
OtherDerived \
>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
cwiseProduct(const MatrixBase<OtherDerived> &other) const;
// sparse * sparse
template<typename OtherDerived>
const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
operator*(const SparseMatrixBase<OtherDerived> &other) const;
// sparse * diagonal
template<typename OtherDerived>
const SparseDiagonalProduct<Derived,OtherDerived>
operator*(const DiagonalBase<OtherDerived> &other) const;
// diagonal * sparse
template<typename OtherDerived> friend
const SparseDiagonalProduct<OtherDerived,Derived>
operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
{ return SparseDiagonalProduct<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
/** dense * sparse (return a dense object unless it is an outer product) */
template<typename OtherDerived> friend
const typename DenseSparseProductReturnType<OtherDerived,Derived>::Type
operator*(const MatrixBase<OtherDerived>& lhs, const Derived& rhs)
{ return typename DenseSparseProductReturnType<OtherDerived,Derived>::Type(lhs.derived(),rhs); }
/** sparse * dense (returns a dense object unless it is an outer product) */
template<typename OtherDerived>
const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
operator*(const MatrixBase<OtherDerived> &other) const;
/** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
{
return SparseSymmetricPermutationProduct<Derived,Upper|Lower>(derived(), perm);
}
template<typename OtherDerived>
Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
#ifdef EIGEN2_SUPPORT
// deprecated
template<typename OtherDerived>
typename internal::plain_matrix_type_column_major<OtherDerived>::type
solveTriangular(const MatrixBase<OtherDerived>& other) const;
// deprecated
template<typename OtherDerived>
void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
#endif // EIGEN2_SUPPORT
template<int Mode>
inline const SparseTriangularView<Derived, Mode> triangularView() const;
template<unsigned int UpLo> inline const SparseSelfAdjointView<Derived, UpLo> selfadjointView() const;
template<unsigned int UpLo> inline SparseSelfAdjointView<Derived, UpLo> selfadjointView();
template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
RealScalar squaredNorm() const;
RealScalar norm() const;
Transpose<Derived> transpose() { return derived(); }
const Transpose<const Derived> transpose() const { return derived(); }
const AdjointReturnType adjoint() const { return transpose(); }
// sub-vector
SparseInnerVectorSet<Derived,1> row(Index i);
const SparseInnerVectorSet<Derived,1> row(Index i) const;
SparseInnerVectorSet<Derived,1> col(Index j);
const SparseInnerVectorSet<Derived,1> col(Index j) const;
SparseInnerVectorSet<Derived,1> innerVector(Index outer);
const SparseInnerVectorSet<Derived,1> innerVector(Index outer) const;
// set of sub-vectors
SparseInnerVectorSet<Derived,Dynamic> subrows(Index start, Index size);
const SparseInnerVectorSet<Derived,Dynamic> subrows(Index start, Index size) const;
SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size);
const SparseInnerVectorSet<Derived,Dynamic> subcols(Index start, Index size) const;
SparseInnerVectorSet<Derived,Dynamic> middleRows(Index start, Index size);
const SparseInnerVectorSet<Derived,Dynamic> middleRows(Index start, Index size) const;
SparseInnerVectorSet<Derived,Dynamic> middleCols(Index start, Index size);
const SparseInnerVectorSet<Derived,Dynamic> middleCols(Index start, Index size) const;
SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize);
const SparseInnerVectorSet<Derived,Dynamic> innerVectors(Index outerStart, Index outerSize) const;
/** \internal use operator= */
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& dst) const
{
dst.setZero();
for (Index j=0; j<outerSize(); ++j)
for (typename Derived::InnerIterator i(derived(),j); i; ++i)
dst.coeffRef(i.row(),i.col()) = i.value();
}
Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense() const
{
return derived();
}
template<typename OtherDerived>
bool isApprox(const SparseMatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
{ return toDense().isApprox(other.toDense(),prec); }
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
{ return toDense().isApprox(other,prec); }
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*/
inline const typename internal::eval<Derived>::type eval() const
{ return typename internal::eval<Derived>::type(derived()); }
Scalar sum() const;
protected:
bool m_isRValue;
};
} // end namespace Eigen
#endif // EIGEN_SPARSEMATRIXBASE_H
|