aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseCore/SparseMatrix.h
blob: 72368ebf36aad67bdc737ee0b3a1020fca6988bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

namespace Eigen { 

/** \ingroup SparseCore_Module
  *
  * \class SparseMatrix
  *
  * \brief A versatible sparse matrix representation
  *
  * This class implements a more versatile variants of the common \em compressed row/column storage format.
  * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
  * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
  * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
  * can be done with limited memory reallocation and copies.
  *
  * A call to the function makeCompressed() turns the matrix into the standard \em compressed format
  * compatible with many library.
  *
  * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
  *
  * \tparam _Scalar the scalar type, i.e. the type of the coefficients
  * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
  *                 is ColMajor or RowMajor. The default is 0 which means column-major.
  * \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
  *
  * This class can be extended with the help of the plugin mechanism described on the page
  * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
  */

namespace internal {
template<typename _Scalar, int _Options, typename _Index>
struct traits<SparseMatrix<_Scalar, _Options, _Index> >
{
  typedef _Scalar Scalar;
  typedef _Index Index;
  typedef Sparse StorageKind;
  typedef MatrixXpr XprKind;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = _Options | NestByRefBit | LvalueBit,
    SupportedAccessPatterns = InnerRandomAccessPattern
  };
};

template<typename _Scalar, int _Options, typename _Index, int DiagIndex>
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> >
{
  typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType;
  typedef typename nested<MatrixType>::type MatrixTypeNested;
  typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;

  typedef _Scalar Scalar;
  typedef Dense StorageKind;
  typedef _Index Index;
  typedef MatrixXpr XprKind;

  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = 1,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = 1,
    Flags = 0
  };
};

} // end namespace internal

template<typename _Scalar, int _Options, typename _Index>
class SparseMatrix
  : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
{
  public:
    EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
    EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)

    typedef MappedSparseMatrix<Scalar,Flags> Map;
    using Base::IsRowMajor;
    typedef internal::CompressedStorage<Scalar,Index> Storage;
    enum {
      Options = _Options
    };

  protected:

    typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    Index m_outerSize;
    Index m_innerSize;
    Index* m_outerIndex;
    Index* m_innerNonZeros;     // optional, if null then the data is compressed
    Storage m_data;
    
    Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
    const  Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }

  public:
    
    /** \returns whether \c *this is in compressed form. */
    inline bool isCompressed() const { return m_innerNonZeros==0; }

    /** \returns the number of rows of the matrix */
    inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
    /** \returns the number of columns of the matrix */
    inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }

    /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
    inline Index innerSize() const { return m_innerSize; }
    /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
    inline Index outerSize() const { return m_outerSize; }
    
    /** \returns a const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
    inline const Scalar* valuePtr() const { return &m_data.value(0); }
    /** \returns a non-const pointer to the array of values.
      * This function is aimed at interoperability with other libraries.
      * \sa innerIndexPtr(), outerIndexPtr() */
    inline Scalar* valuePtr() { return &m_data.value(0); }

    /** \returns a const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
    inline const Index* innerIndexPtr() const { return &m_data.index(0); }
    /** \returns a non-const pointer to the array of inner indices.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), outerIndexPtr() */
    inline Index* innerIndexPtr() { return &m_data.index(0); }

    /** \returns a const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
    inline const Index* outerIndexPtr() const { return m_outerIndex; }
    /** \returns a non-const pointer to the array of the starting positions of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \sa valuePtr(), innerIndexPtr() */
    inline Index* outerIndexPtr() { return m_outerIndex; }

    /** \returns a const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
    inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; }
    /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
      * This function is aimed at interoperability with other libraries.
      * \warning it returns the null pointer 0 in compressed mode */
    inline Index* innerNonZeroPtr() { return m_innerNonZeros; }

    /** \internal */
    inline Storage& data() { return m_data; }
    /** \internal */
    inline const Storage& data() const { return m_data; }

    /** \returns the value of the matrix at position \a i, \a j
      * This function returns Scalar(0) if the element is an explicit \em zero */
    inline Scalar coeff(Index row, Index col) const
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
      return m_data.atInRange(m_outerIndex[outer], end, inner);
    }

    /** \returns a non-const reference to the value of the matrix at position \a i, \a j
      *
      * If the element does not exist then it is inserted via the insert(Index,Index) function
      * which itself turns the matrix into a non compressed form if that was not the case.
      *
      * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
      * function if the element does not already exist.
      */
    inline Scalar& coeffRef(Index row, Index col)
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = m_outerIndex[outer];
      Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
      eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      if(end<=start)
        return insert(row,col);
      const Index p = m_data.searchLowerIndex(start,end-1,inner);
      if((p<end) && (m_data.index(p)==inner))
        return m_data.value(p);
      else
        return insert(row,col);
    }

    /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
      * The non zero coefficient must \b not already exist.
      *
      * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
      * mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first
      * call reserve(const SizesType &) to reserve a more appropriate number of elements per
      * inner vector that better match your scenario.
      *
      * This function performs a sorted insertion in O(1) if the elements of each inner vector are
      * inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
      *
      */
    Scalar& insert(Index row, Index col)
    {
      eigen_assert(row>=0 && row<rows() && col>=0 && col<cols());
      
      if(isCompressed())
      {
        reserve(Matrix<Index,Dynamic,1>::Constant(outerSize(), 2));
      }
      return insertUncompressed(row,col);
    }

  public:

    class InnerIterator;
    class ReverseInnerIterator;

    /** Removes all non zeros but keep allocated memory */
    inline void setZero()
    {
      m_data.clear();
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
      if(m_innerNonZeros)
        memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index));
    }

    /** \returns the number of non zero coefficients */
    inline Index nonZeros() const
    {
      if(m_innerNonZeros)
        return innerNonZeros().sum();
      return static_cast<Index>(m_data.size());
    }

    /** Preallocates \a reserveSize non zeros.
      *
      * Precondition: the matrix must be in compressed mode. */
    inline void reserve(Index reserveSize)
    {
      eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
      m_data.reserve(reserveSize);
    }
    
    #ifdef EIGEN_PARSED_BY_DOXYGEN
    /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
      *
      * This function turns the matrix in non-compressed mode */
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes);
    #else
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type())
    {
      EIGEN_UNUSED_VARIABLE(enableif);
      reserveInnerVectors(reserveSizes);
    }
    template<class SizesType>
    inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif =
    #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename
        typename
    #endif
        SizesType::Scalar())
    {
      EIGEN_UNUSED_VARIABLE(enableif);
      reserveInnerVectors(reserveSizes);
    }
    #endif // EIGEN_PARSED_BY_DOXYGEN
  protected:
    template<class SizesType>
    inline void reserveInnerVectors(const SizesType& reserveSizes)
    {
      if(isCompressed())
      {
        std::size_t totalReserveSize = 0;
        // turn the matrix into non-compressed mode
        m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        
        // temporarily use m_innerSizes to hold the new starting points.
        Index* newOuterIndex = m_innerNonZeros;
        
        Index count = 0;
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
          count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
          totalReserveSize += reserveSizes[j];
        }
        m_data.reserve(totalReserveSize);
        Index previousOuterIndex = m_outerIndex[m_outerSize];
        for(Index j=m_outerSize-1; j>=0; --j)
        {
          Index innerNNZ = previousOuterIndex - m_outerIndex[j];
          for(Index i=innerNNZ-1; i>=0; --i)
          {
            m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
            m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
          }
          previousOuterIndex = m_outerIndex[j];
          m_outerIndex[j] = newOuterIndex[j];
          m_innerNonZeros[j] = innerNNZ;
        }
        m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
        
        m_data.resize(m_outerIndex[m_outerSize]);
      }
      else
      {
        Index* newOuterIndex = static_cast<Index*>(std::malloc((m_outerSize+1)*sizeof(Index)));
        if (!newOuterIndex) internal::throw_std_bad_alloc();
        
        Index count = 0;
        for(Index j=0; j<m_outerSize; ++j)
        {
          newOuterIndex[j] = count;
          Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
          Index toReserve = std::max<Index>(reserveSizes[j], alreadyReserved);
          count += toReserve + m_innerNonZeros[j];
        }
        newOuterIndex[m_outerSize] = count;
        
        m_data.resize(count);
        for(Index j=m_outerSize-1; j>=0; --j)
        {
          Index offset = newOuterIndex[j] - m_outerIndex[j];
          if(offset>0)
          {
            Index innerNNZ = m_innerNonZeros[j];
            for(Index i=innerNNZ-1; i>=0; --i)
            {
              m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
              m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
            }
          }
        }
        
        std::swap(m_outerIndex, newOuterIndex);
        std::free(newOuterIndex);
      }
      
    }
  public:

    //--- low level purely coherent filling ---

    /** \internal
      * \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
      * - the nonzero does not already exist
      * - the new coefficient is the last one according to the storage order
      *
      * Before filling a given inner vector you must call the statVec(Index) function.
      *
      * After an insertion session, you should call the finalize() function.
      *
      * \sa insert, insertBackByOuterInner, startVec */
    inline Scalar& insertBack(Index row, Index col)
    {
      return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
    }

    /** \internal
      * \sa insertBack, startVec */
    inline Scalar& insertBackByOuterInner(Index outer, Index inner)
    {
      eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
      eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(Scalar(0), inner);
      return m_data.value(p);
    }

    /** \internal
      * \warning use it only if you know what you are doing */
    inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
    {
      Index p = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];
      m_data.append(Scalar(0), inner);
      return m_data.value(p);
    }

    /** \internal
      * \sa insertBack, insertBackByOuterInner */
    inline void startVec(Index outer)
    {
      eigen_assert(m_outerIndex[outer]==Index(m_data.size()) && "You must call startVec for each inner vector sequentially");
      eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
      m_outerIndex[outer+1] = m_outerIndex[outer];
    }

    /** \internal
      * Must be called after inserting a set of non zero entries using the low level compressed API.
      */
    inline void finalize()
    {
      if(isCompressed())
      {
        Index size = static_cast<Index>(m_data.size());
        Index i = m_outerSize;
        // find the last filled column
        while (i>=0 && m_outerIndex[i]==0)
          --i;
        ++i;
        while (i<=m_outerSize)
        {
          m_outerIndex[i] = size;
          ++i;
        }
      }
    }

    //---

    template<typename InputIterators>
    void setFromTriplets(const InputIterators& begin, const InputIterators& end);

    void sumupDuplicates();

    //---
    
    /** \internal
      * same as insert(Index,Index) except that the indices are given relative to the storage order */
    Scalar& insertByOuterInner(Index j, Index i)
    {
      return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
    }

    /** Turns the matrix into the \em compressed format.
      */
    void makeCompressed()
    {
      if(isCompressed())
        return;
      
      Index oldStart = m_outerIndex[1];
      m_outerIndex[1] = m_innerNonZeros[0];
      for(Index j=1; j<m_outerSize; ++j)
      {
        Index nextOldStart = m_outerIndex[j+1];
        Index offset = oldStart - m_outerIndex[j];
        if(offset>0)
        {
          for(Index k=0; k<m_innerNonZeros[j]; ++k)
          {
            m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
            m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
          }
        }
        m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
        oldStart = nextOldStart;
      }
      std::free(m_innerNonZeros);
      m_innerNonZeros = 0;
      m_data.resize(m_outerIndex[m_outerSize]);
      m_data.squeeze();
    }

    /** Turns the matrix into the uncompressed mode */
    void uncompress()
    {
      if(m_innerNonZeros != 0)
        return; 
      m_innerNonZeros = static_cast<Index*>(std::malloc(m_outerSize * sizeof(Index)));
      for (Index i = 0; i < m_outerSize; i++)
      {
        m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; 
      }
    }
    
    /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
    void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision())
    {
      prune(default_prunning_func(reference,epsilon));
    }
    
    /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
      * The functor type \a KeepFunc must implement the following function:
      * \code
      * bool operator() (const Index& row, const Index& col, const Scalar& value) const;
      * \endcode
      * \sa prune(Scalar,RealScalar)
      */
    template<typename KeepFunc>
    void prune(const KeepFunc& keep = KeepFunc())
    {
      // TODO optimize the uncompressed mode to avoid moving and allocating the data twice
      // TODO also implement a unit test
      makeCompressed();

      Index k = 0;
      for(Index j=0; j<m_outerSize; ++j)
      {
        Index previousStart = m_outerIndex[j];
        m_outerIndex[j] = k;
        Index end = m_outerIndex[j+1];
        for(Index i=previousStart; i<end; ++i)
        {
          if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
          {
            m_data.value(k) = m_data.value(i);
            m_data.index(k) = m_data.index(i);
            ++k;
          }
        }
      }
      m_outerIndex[m_outerSize] = k;
      m_data.resize(k,0);
    }

    /** Resizes the matrix to a \a rows x \a cols matrix leaving old values untouched.
      * \sa resizeNonZeros(Index), reserve(), setZero()
      */
    void conservativeResize(Index rows, Index cols) 
    {
      // No change
      if (this->rows() == rows && this->cols() == cols) return;
      
      // If one dimension is null, then there is nothing to be preserved
      if(rows==0 || cols==0) return resize(rows,cols);

      Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows();
      Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols();
      Index newInnerSize = IsRowMajor ? cols : rows;

      // Deals with inner non zeros
      if (m_innerNonZeros)
      {
        // Resize m_innerNonZeros
        Index *newInnerNonZeros = static_cast<Index*>(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(Index)));
        if (!newInnerNonZeros) internal::throw_std_bad_alloc();
        m_innerNonZeros = newInnerNonZeros;
        
        for(Index i=m_outerSize; i<m_outerSize+outerChange; i++)          
          m_innerNonZeros[i] = 0;
      } 
      else if (innerChange < 0) 
      {
        // Inner size decreased: allocate a new m_innerNonZeros
        m_innerNonZeros = static_cast<Index*>(std::malloc((m_outerSize+outerChange+1) * sizeof(Index)));
        if (!m_innerNonZeros) internal::throw_std_bad_alloc();
        for(Index i = 0; i < m_outerSize; i++)
          m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i];
      }
      
      // Change the m_innerNonZeros in case of a decrease of inner size
      if (m_innerNonZeros && innerChange < 0)
      {
        for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++)
        {
          Index &n = m_innerNonZeros[i];
          Index start = m_outerIndex[i];
          while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; 
        }
      }
      
      m_innerSize = newInnerSize;

      // Re-allocate outer index structure if necessary
      if (outerChange == 0)
        return;
          
      Index *newOuterIndex = static_cast<Index*>(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(Index)));
      if (!newOuterIndex) internal::throw_std_bad_alloc();
      m_outerIndex = newOuterIndex;
      if (outerChange > 0)
      {
        Index last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize];
        for(Index i=m_outerSize; i<m_outerSize+outerChange+1; i++)          
          m_outerIndex[i] = last; 
      }
      m_outerSize += outerChange;
    }
    
    /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
      * \sa resizeNonZeros(Index), reserve(), setZero()
      */
    void resize(Index rows, Index cols)
    {
      const Index outerSize = IsRowMajor ? rows : cols;
      m_innerSize = IsRowMajor ? cols : rows;
      m_data.clear();
      if (m_outerSize != outerSize || m_outerSize==0)
      {
        std::free(m_outerIndex);
        m_outerIndex = static_cast<Index*>(std::malloc((outerSize + 1) * sizeof(Index)));
        if (!m_outerIndex) internal::throw_std_bad_alloc();
        
        m_outerSize = outerSize;
      }
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
      memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
    }

    /** \internal
      * Resize the nonzero vector to \a size */
    void resizeNonZeros(Index size)
    {
      // TODO remove this function
      m_data.resize(size);
    }

    /** \returns a const expression of the diagonal coefficients */
    const Diagonal<const SparseMatrix> diagonal() const { return *this; }

    /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
    inline SparseMatrix()
      : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(0, 0);
    }

    /** Constructs a \a rows \c x \a cols empty matrix */
    inline SparseMatrix(Index rows, Index cols)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      resize(rows, cols);
    }

    /** Constructs a sparse matrix from the sparse expression \a other */
    template<typename OtherDerived>
    inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      check_template_parameters();
      const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
      if (needToTranspose)  *this = other.derived();
      else                  internal::call_assignment_no_alias(*this, other.derived());
    }
    
    /** Constructs a sparse matrix from the sparse selfadjoint view \a other */
    template<typename OtherDerived, unsigned int UpLo>
    inline SparseMatrix(const SparseSelfAdjointView<OtherDerived, UpLo>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      Base::operator=(other);
    }

    /** Copy constructor (it performs a deep copy) */
    inline SparseMatrix(const SparseMatrix& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      *this = other.derived();
    }

    /** \brief Copy constructor with in-place evaluation */
    template<typename OtherDerived>
    SparseMatrix(const ReturnByValue<OtherDerived>& other)
      : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
    {
      check_template_parameters();
      initAssignment(other);
      other.evalTo(*this);
    }

    /** Swaps the content of two sparse matrices of the same type.
      * This is a fast operation that simply swaps the underlying pointers and parameters. */
    inline void swap(SparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_outerIndex, other.m_outerIndex);
      std::swap(m_innerSize, other.m_innerSize);
      std::swap(m_outerSize, other.m_outerSize);
      std::swap(m_innerNonZeros, other.m_innerNonZeros);
      m_data.swap(other.m_data);
    }

    /** Sets *this to the identity matrix */
    inline void setIdentity()
    {
      eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES");
      this->m_data.resize(rows());
      Eigen::Map<Matrix<Index, Dynamic, 1> >(&this->m_data.index(0), rows()).setLinSpaced(0, rows()-1);
      Eigen::Map<Matrix<Scalar, Dynamic, 1> >(&this->m_data.value(0), rows()).setOnes();
      Eigen::Map<Matrix<Index, Dynamic, 1> >(this->m_outerIndex, rows()+1).setLinSpaced(0, rows());
    }
    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else if(this!=&other)
      {
        initAssignment(other);
        if(other.isCompressed())
        {
          internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex);
          m_data = other.m_data;
        }
        else
        {
          Base::operator=(other);
        }
      }
      return *this;
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename OtherDerived>
    inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
    { return Base::operator=(other.derived()); }
#endif // EIGEN_PARSED_BY_DOXYGEN

    template<typename OtherDerived>
    EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other);

    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      EIGEN_DBG_SPARSE(
        s << "Nonzero entries:\n";
        if(m.isCompressed())
          for (Index i=0; i<m.nonZeros(); ++i)
            s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
        else
          for (Index i=0; i<m.outerSize(); ++i)
          {
            Index p = m.m_outerIndex[i];
            Index pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
            Index k=p;
            for (; k<pe; ++k)
              s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
            for (; k<m.m_outerIndex[i+1]; ++k)
              s << "(_,_) ";
          }
        s << std::endl;
        s << std::endl;
        s << "Outer pointers:\n";
        for (Index i=0; i<m.outerSize(); ++i)
          s << m.m_outerIndex[i] << " ";
        s << " $" << std::endl;
        if(!m.isCompressed())
        {
          s << "Inner non zeros:\n";
          for (Index i=0; i<m.outerSize(); ++i)
            s << m.m_innerNonZeros[i] << " ";
          s << " $" << std::endl;
        }
        s << std::endl;
      );
      s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
      return s;
    }

    /** Destructor */
    inline ~SparseMatrix()
    {
      std::free(m_outerIndex);
      std::free(m_innerNonZeros);
    }

#ifndef EIGEN_PARSED_BY_DOXYGEN
    /** Overloaded for performance */
    Scalar sum() const;
#endif
    
#   ifdef EIGEN_SPARSEMATRIX_PLUGIN
#     include EIGEN_SPARSEMATRIX_PLUGIN
#   endif

protected:

    template<typename Other>
    void initAssignment(const Other& other)
    {
      eigen_assert(     other.rows() == typename Other::Index(Index(other.rows()))
                    &&  other.cols() == typename Other::Index(Index(other.cols())) );
      resize(Index(other.rows()), Index(other.cols()));
      if(m_innerNonZeros)
      {
        std::free(m_innerNonZeros);
        m_innerNonZeros = 0;
      }
    }

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col);

    /** \internal
      * A vector object that is equal to 0 everywhere but v at the position i */
    class SingletonVector
    {
        Index m_index;
        Index m_value;
      public:
        typedef Index value_type;
        SingletonVector(Index i, Index v)
          : m_index(i), m_value(v)
        {}

        Index operator[](Index i) const { return i==m_index ? m_value : 0; }
    };

    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col);

public:
    /** \internal
      * \sa insert(Index,Index) */
    EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      eigen_assert(!isCompressed());
      eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer]));

      Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++;
      m_data.index(p) = inner;
      return (m_data.value(p) = 0);
    }

private:
  static void check_template_parameters()
  {
    EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
    EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS);
  }

  struct default_prunning_func {
    default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {}
    inline bool operator() (const Index&, const Index&, const Scalar& value) const
    {
      return !internal::isMuchSmallerThan(value, reference, epsilon);
    }
    Scalar reference;
    RealScalar epsilon;
  };
};

template<typename Scalar, int _Options, typename _Index>
class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
{
  public:
    InnerIterator(const SparseMatrix& mat, Index outer)
      : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer])
    {
      if(mat.isCompressed())
        m_end = mat.m_outerIndex[outer+1];
      else
        m_end = m_id + mat.m_innerNonZeros[outer];
    }

    inline InnerIterator& operator++() { m_id++; return *this; }

    inline const Scalar& value() const { return m_values[m_id]; }
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }

    inline Index index() const { return m_indices[m_id]; }
    inline Index outer() const { return m_outer; }
    inline Index row() const { return IsRowMajor ? m_outer : index(); }
    inline Index col() const { return IsRowMajor ? index() : m_outer; }

    inline operator bool() const { return (m_id < m_end); }

  protected:
    const Scalar* m_values;
    const Index* m_indices;
    const Index m_outer;
    Index m_id;
    Index m_end;
};

template<typename Scalar, int _Options, typename _Index>
class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator
{
  public:
    ReverseInnerIterator(const SparseMatrix& mat, Index outer)
      : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer])
    {
      if(mat.isCompressed())
        m_id = mat.m_outerIndex[outer+1];
      else
        m_id = m_start + mat.m_innerNonZeros[outer];
    }

    inline ReverseInnerIterator& operator--() { --m_id; return *this; }

    inline const Scalar& value() const { return m_values[m_id-1]; }
    inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }

    inline Index index() const { return m_indices[m_id-1]; }
    inline Index outer() const { return m_outer; }
    inline Index row() const { return IsRowMajor ? m_outer : index(); }
    inline Index col() const { return IsRowMajor ? index() : m_outer; }

    inline operator bool() const { return (m_id > m_start); }

  protected:
    const Scalar* m_values;
    const Index* m_indices;
    const Index m_outer;
    Index m_id;
    const Index m_start;
};

namespace internal {

template<typename InputIterator, typename SparseMatrixType>
void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0)
{
  EIGEN_UNUSED_VARIABLE(Options);
  enum { IsRowMajor = SparseMatrixType::IsRowMajor };
  typedef typename SparseMatrixType::Scalar Scalar;
  typedef typename SparseMatrixType::Index Index;
  SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor,Index> trMat(mat.rows(),mat.cols());

  if(begin!=end)
  {
    // pass 1: count the nnz per inner-vector
    Matrix<Index,Dynamic,1> wi(trMat.outerSize());
    wi.setZero();
    for(InputIterator it(begin); it!=end; ++it)
    {
      eigen_assert(it->row()>=0 && it->row()<mat.rows() && it->col()>=0 && it->col()<mat.cols());
      wi(IsRowMajor ? it->col() : it->row())++;
    }

    // pass 2: insert all the elements into trMat
    trMat.reserve(wi);
    for(InputIterator it(begin); it!=end; ++it)
      trMat.insertBackUncompressed(it->row(),it->col()) = it->value();

    // pass 3:
    trMat.sumupDuplicates();
  }

  // pass 4: transposed copy -> implicit sorting
  mat = trMat;
}

}


/** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end.
  *
  * A \em triplet is a tuple (i,j,value) defining a non-zero element.
  * The input list of triplets does not have to be sorted, and can contains duplicated elements.
  * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up.
  * This is a \em O(n) operation, with \em n the number of triplet elements.
  * The initial contents of \c *this is destroyed.
  * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor,
  * or the resize(Index,Index) method. The sizes are not extracted from the triplet list.
  *
  * The \a InputIterators value_type must provide the following interface:
  * \code
  * Scalar value() const; // the value
  * Scalar row() const;   // the row index i
  * Scalar col() const;   // the column index j
  * \endcode
  * See for instance the Eigen::Triplet template class.
  *
  * Here is a typical usage example:
  * \code
    typedef Triplet<double> T;
    std::vector<T> tripletList;
    triplets.reserve(estimation_of_entries);
    for(...)
    {
      // ...
      tripletList.push_back(T(i,j,v_ij));
    }
    SparseMatrixType m(rows,cols);
    m.setFromTriplets(tripletList.begin(), tripletList.end());
    // m is ready to go!
  * \endcode
  *
  * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define
  * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather
  * be explicitely stored into a std::vector for instance.
  */
template<typename Scalar, int _Options, typename _Index>
template<typename InputIterators>
void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end)
{
  internal::set_from_triplets(begin, end, *this);
}

/** \internal */
template<typename Scalar, int _Options, typename _Index>
void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates()
{
  eigen_assert(!isCompressed());
  // TODO, in practice we should be able to use m_innerNonZeros for that task
  Matrix<Index,Dynamic,1> wi(innerSize());
  wi.fill(-1);
  Index count = 0;
  // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers
  for(Index j=0; j<outerSize(); ++j)
  {
    Index start   = count;
    Index oldEnd  = m_outerIndex[j]+m_innerNonZeros[j];
    for(Index k=m_outerIndex[j]; k<oldEnd; ++k)
    {
      Index i = m_data.index(k);
      if(wi(i)>=start)
      {
        // we already meet this entry => accumulate it
        m_data.value(wi(i)) += m_data.value(k);
      }
      else
      {
        m_data.value(count) = m_data.value(k);
        m_data.index(count) = m_data.index(k);
        wi(i) = count;
        ++count;
      }
    }
    m_outerIndex[j] = start;
  }
  m_outerIndex[m_outerSize] = count;

  // turn the matrix into compressed form
  std::free(m_innerNonZeros);
  m_innerNonZeros = 0;
  m_data.resize(m_outerIndex[m_outerSize]);
}

template<typename Scalar, int _Options, typename _Index>
template<typename OtherDerived>
EIGEN_DONT_INLINE SparseMatrix<Scalar,_Options,_Index>& SparseMatrix<Scalar,_Options,_Index>::operator=(const SparseMatrixBase<OtherDerived>& other)
{
  EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
        YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)

  const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator<OtherDerived>::Flags & RowMajorBit);
  if (needToTranspose)
  {
    // two passes algorithm:
    //  1 - compute the number of coeffs per dest inner vector
    //  2 - do the actual copy/eval
    // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
    typedef typename internal::nested_eval<OtherDerived,2,typename internal::plain_matrix_type<OtherDerived>::type >::type OtherCopy;
    typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
    typedef internal::evaluator<_OtherCopy> OtherCopyEval;
    OtherCopy otherCopy(other.derived());
    OtherCopyEval otherCopyEval(otherCopy);

    SparseMatrix dest(other.rows(),other.cols());
    Eigen::Map<Matrix<Index, Dynamic, 1> > (dest.m_outerIndex,dest.outerSize()).setZero();

    // pass 1
    // FIXME the above copy could be merged with that pass
    for (Index j=0; j<otherCopy.outerSize(); ++j)
      for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
        ++dest.m_outerIndex[it.index()];

    // prefix sum
    Index count = 0;
    Matrix<Index,Dynamic,1> positions(dest.outerSize());
    for (Index j=0; j<dest.outerSize(); ++j)
    {
      Index tmp = dest.m_outerIndex[j];
      dest.m_outerIndex[j] = count;
      positions[j] = count;
      count += tmp;
    }
    dest.m_outerIndex[dest.outerSize()] = count;
    // alloc
    dest.m_data.resize(count);
    // pass 2
    for (Index j=0; j<otherCopy.outerSize(); ++j)
    {
      for (typename OtherCopyEval::InnerIterator it(otherCopyEval, j); it; ++it)
      {
        Index pos = positions[it.index()]++;
        dest.m_data.index(pos) = j;
        dest.m_data.value(pos) = it.value();
      }
    }
    this->swap(dest);
    return *this;
  }
  else
  {
    if(other.isRValue())
    {
      initAssignment(other.derived());
    }
    // there is no special optimization
    return Base::operator=(other.derived());
  }
}

template<typename _Scalar, int _Options, typename _Index>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertUncompressed(Index row, Index col)
{
  eigen_assert(!isCompressed());

  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;

  Index room = m_outerIndex[outer+1] - m_outerIndex[outer];
  Index innerNNZ = m_innerNonZeros[outer];
  if(innerNNZ>=room)
  {
    // this inner vector is full, we need to reallocate the whole buffer :(
    reserve(SingletonVector(outer,std::max<Index>(2,innerNNZ)));
  }

  Index startId = m_outerIndex[outer];
  Index p = startId + m_innerNonZeros[outer];
  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }
  eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end");

  m_innerNonZeros[outer]++;

  m_data.index(p) = inner;
  return (m_data.value(p) = 0);
}

template<typename _Scalar, int _Options, typename _Index>
EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_Index>::Scalar& SparseMatrix<_Scalar,_Options,_Index>::insertCompressed(Index row, Index col)
{
  eigen_assert(isCompressed());

  const Index outer = IsRowMajor ? row : col;
  const Index inner = IsRowMajor ? col : row;

  Index previousOuter = outer;
  if (m_outerIndex[outer+1]==0)
  {
    // we start a new inner vector
    while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
    {
      m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
      --previousOuter;
    }
    m_outerIndex[outer+1] = m_outerIndex[outer];
  }

  // here we have to handle the tricky case where the outerIndex array
  // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
  // the 2nd inner vector...
  bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
                && (size_t(m_outerIndex[outer+1]) == m_data.size());

  size_t startId = m_outerIndex[outer];
  // FIXME let's make sure sizeof(long int) == sizeof(size_t)
  size_t p = m_outerIndex[outer+1];
  ++m_outerIndex[outer+1];

  double reallocRatio = 1;
  if (m_data.allocatedSize()<=m_data.size())
  {
    // if there is no preallocated memory, let's reserve a minimum of 32 elements
    if (m_data.size()==0)
    {
      m_data.reserve(32);
    }
    else
    {
      // we need to reallocate the data, to reduce multiple reallocations
      // we use a smart resize algorithm based on the current filling ratio
      // in addition, we use double to avoid integers overflows
      double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1);
      reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size());
      // furthermore we bound the realloc ratio to:
      //   1) reduce multiple minor realloc when the matrix is almost filled
      //   2) avoid to allocate too much memory when the matrix is almost empty
      reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.);
    }
  }
  m_data.resize(m_data.size()+1,reallocRatio);

  if (!isLastVec)
  {
    if (previousOuter==-1)
    {
      // oops wrong guess.
      // let's correct the outer offsets
      for (Index k=0; k<=(outer+1); ++k)
        m_outerIndex[k] = 0;
      Index k=outer+1;
      while(m_outerIndex[k]==0)
        m_outerIndex[k++] = 1;
      while (k<=m_outerSize && m_outerIndex[k]!=0)
        m_outerIndex[k++]++;
      p = 0;
      --k;
      k = m_outerIndex[k]-1;
      while (k>0)
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
    else
    {
      // we are not inserting into the last inner vec
      // update outer indices:
      Index j = outer+2;
      while (j<=m_outerSize && m_outerIndex[j]!=0)
        m_outerIndex[j++]++;
      --j;
      // shift data of last vecs:
      Index k = m_outerIndex[j]-1;
      while (k>=Index(p))
      {
        m_data.index(k) = m_data.index(k-1);
        m_data.value(k) = m_data.value(k-1);
        k--;
      }
    }
  }

  while ( (p > startId) && (m_data.index(p-1) > inner) )
  {
    m_data.index(p) = m_data.index(p-1);
    m_data.value(p) = m_data.value(p-1);
    --p;
  }

  m_data.index(p) = inner;
  return (m_data.value(p) = 0);
}

namespace internal {

template<typename _Scalar, int _Options, typename _Index>
struct evaluator<SparseMatrix<_Scalar,_Options,_Index> >
  : evaluator_base<SparseMatrix<_Scalar,_Options,_Index> >
{
  typedef _Scalar Scalar;
  typedef _Index Index;
  typedef SparseMatrix<_Scalar,_Options,_Index> SparseMatrixType;
  typedef typename SparseMatrixType::InnerIterator InnerIterator;
  typedef typename SparseMatrixType::ReverseInnerIterator ReverseInnerIterator;
  
  enum {
    CoeffReadCost = NumTraits<_Scalar>::ReadCost,
    Flags = SparseMatrixType::Flags
  };
  
  evaluator() : m_matrix(0) {}
  evaluator(const SparseMatrixType &mat) : m_matrix(&mat) {}
  
  operator SparseMatrixType&() { return m_matrix->const_cast_derived(); }
  operator const SparseMatrixType&() const { return *m_matrix; }
  
  Scalar coeff(Index row, Index col) const { return m_matrix->coeff(row,col); }

  const SparseMatrixType *m_matrix;
};

}

} // end namespace Eigen

#endif // EIGEN_SPARSEMATRIX_H