aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseCore/SparseMap.h
blob: eb241c3e29eb7a300454c09cf8e546e494c47874 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPARSE_MAP_H
#define EIGEN_SPARSE_MAP_H

namespace Eigen {

namespace internal {

template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
struct traits<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
  : public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
{
  typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
  typedef traits<PlainObjectType> TraitsBase;
  enum {
    Flags = TraitsBase::Flags & (~NestByRefBit)
  };
};

template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
struct traits<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
  : public traits<SparseMatrix<MatScalar,MatOptions,MatIndex> >
{
  typedef SparseMatrix<MatScalar,MatOptions,MatIndex> PlainObjectType;
  typedef traits<PlainObjectType> TraitsBase;
  enum {
    Flags = TraitsBase::Flags & (~ (NestByRefBit | LvalueBit))
  };
};

} // end namespace internal

template<typename Derived,
         int Level = internal::accessors_level<Derived>::has_write_access ? WriteAccessors : ReadOnlyAccessors
> class SparseMapBase;

/** \ingroup SparseCore_Module
  * class SparseMapBase
  * \brief Common base class for Map and Ref instance of sparse matrix and vector.
  */
template<typename Derived>
class SparseMapBase<Derived,ReadOnlyAccessors>
  : public SparseCompressedBase<Derived>
{
  public:
    typedef SparseCompressedBase<Derived> Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::StorageIndex StorageIndex;
    enum { IsRowMajor = Base::IsRowMajor };
    using Base::operator=;
  protected:
    
    typedef typename internal::conditional<
                         bool(internal::is_lvalue<Derived>::value),
                         Scalar *, const Scalar *>::type ScalarPointer;
    typedef typename internal::conditional<
                         bool(internal::is_lvalue<Derived>::value),
                         StorageIndex *, const StorageIndex *>::type IndexPointer;

    Index   m_outerSize;
    Index   m_innerSize;
    Array<StorageIndex,2,1>  m_zero_nnz;
    IndexPointer  m_outerIndex;
    IndexPointer  m_innerIndices;
    ScalarPointer m_values;
    IndexPointer  m_innerNonZeros;

  public:

    /** \copydoc SparseMatrixBase::rows() */
    inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
    /** \copydoc SparseMatrixBase::cols() */
    inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
    /** \copydoc SparseMatrixBase::innerSize() */
    inline Index innerSize() const { return m_innerSize; }
    /** \copydoc SparseMatrixBase::outerSize() */
    inline Index outerSize() const { return m_outerSize; }
    /** \copydoc SparseCompressedBase::nonZeros */
    inline Index nonZeros() const { return m_zero_nnz[1]; }
    
    /** \copydoc SparseCompressedBase::isCompressed */
    bool isCompressed() const { return m_innerNonZeros==0; }

    //----------------------------------------
    // direct access interface
    /** \copydoc SparseMatrix::valuePtr */
    inline const Scalar* valuePtr() const { return m_values; }
    /** \copydoc SparseMatrix::innerIndexPtr */
    inline const StorageIndex* innerIndexPtr() const { return m_innerIndices; }
    /** \copydoc SparseMatrix::outerIndexPtr */
    inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; }
    /** \copydoc SparseMatrix::innerNonZeroPtr */
    inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; }
    //----------------------------------------

    /** \copydoc SparseMatrix::coeff */
    inline Scalar coeff(Index row, Index col) const
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = m_outerIndex[outer];
      Index end = isCompressed() ? m_outerIndex[outer+1] : start + m_innerNonZeros[outer];
      if (start==end)
        return Scalar(0);
      else if (end>0 && inner==m_innerIndices[end-1])
        return m_values[end-1];
      // ^^  optimization: let's first check if it is the last coefficient
      // (very common in high level algorithms)

      const StorageIndex* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
      const Index id = r-&m_innerIndices[0];
      return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
    }

    inline SparseMapBase(Index rows, Index cols, Index nnz, IndexPointer outerIndexPtr, IndexPointer innerIndexPtr,
                              ScalarPointer valuePtr, IndexPointer innerNonZerosPtr = 0)
      : m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_zero_nnz(0,internal::convert_index<StorageIndex>(nnz)), m_outerIndex(outerIndexPtr),
        m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(innerNonZerosPtr)
    {}

    // for vectors
    inline SparseMapBase(Index size, Index nnz, IndexPointer innerIndexPtr, ScalarPointer valuePtr)
      : m_outerSize(1), m_innerSize(size), m_zero_nnz(0,internal::convert_index<StorageIndex>(nnz)), m_outerIndex(m_zero_nnz.data()),
        m_innerIndices(innerIndexPtr), m_values(valuePtr), m_innerNonZeros(0)
    {}

    /** Empty destructor */
    inline ~SparseMapBase() {}

  protected:
    inline SparseMapBase() {}
};

/** \ingroup SparseCore_Module
  * class SparseMapBase
  * \brief Common base class for writable Map and Ref instance of sparse matrix and vector.
  */
template<typename Derived>
class SparseMapBase<Derived,WriteAccessors>
  : public SparseMapBase<Derived,ReadOnlyAccessors>
{
    typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
    
  public:
    typedef SparseMapBase<Derived, ReadOnlyAccessors> Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::StorageIndex StorageIndex;
    enum { IsRowMajor = Base::IsRowMajor };
    
    using Base::operator=;

  public:
    
    //----------------------------------------
    // direct access interface
    using Base::valuePtr;
    using Base::innerIndexPtr;
    using Base::outerIndexPtr;
    using Base::innerNonZeroPtr;
    inline Scalar* valuePtr()       { return Base::m_values; }
    inline StorageIndex* innerIndexPtr()   { return Base::m_innerIndices; }
    inline StorageIndex* outerIndexPtr()   { return Base::m_outerIndex; }
    inline StorageIndex* innerNonZeroPtr() { return Base::m_innerNonZeros; }
    //----------------------------------------

    inline Scalar& coeffRef(Index row, Index col)
    {
      const Index outer = IsRowMajor ? row : col;
      const Index inner = IsRowMajor ? col : row;

      Index start = Base::m_outerIndex[outer];
      Index end = Base::isCompressed() ? Base::m_outerIndex[outer+1] : start + Base::m_innerNonZeros[outer];
      eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
      Index* r = std::lower_bound(&Base::m_innerIndices[start],&Base::m_innerIndices[end],inner);
      const Index id = r - &Base::m_innerIndices[0];
      eigen_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
      return const_cast<Scalar*>(Base::m_values)[id];
    }
    
    inline SparseMapBase(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr, StorageIndex* innerIndexPtr,
                              Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0)
      : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
    {}

    // for vectors
    inline SparseMapBase(Index size, Index nnz, StorageIndex* innerIndexPtr, Scalar* valuePtr)
      : Base(size, nnz, innerIndexPtr, valuePtr)
    {}

    /** Empty destructor */
    inline ~SparseMapBase() {}

  protected:
    inline SparseMapBase() {}
};

/** \ingroup SparseCore_Module
  *
  * \brief Specialization of class Map for SparseMatrix-like storage.
  *
  * \tparam SparseMatrixType the equivalent sparse matrix type of the referenced data, it must be a template instance of class SparseMatrix.
  *
  * \sa class Map, class SparseMatrix, class Ref<SparseMatrixType,Options>
  */
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
class Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
  : public SparseMapBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
#else
template<typename SparseMatrixType>
class Map<SparseMatrixType>
  : public SparseMapBase<Derived,WriteAccessors>
#endif
{
  public:
    typedef SparseMapBase<Map> Base;
    EIGEN_SPARSE_PUBLIC_INTERFACE(Map)
    enum { IsRowMajor = Base::IsRowMajor };

  public:

    /** Constructs a read-write Map to a sparse matrix of size \a rows x \a cols, containing \a nnz non-zero coefficients,
      * stored as a sparse format as defined by the pointers \a outerIndexPtr, \a innerIndexPtr, and \a valuePtr.
      * If the optional parameter \a innerNonZerosPtr is the null pointer, then a standard compressed format is assumed.
      *
      * More details on the expected storage schemes are given in the \ref TutorialSparse "manual pages".
      */
    inline Map(Index rows, Index cols, Index nnz, StorageIndex* outerIndexPtr,
               StorageIndex* innerIndexPtr, Scalar* valuePtr, StorageIndex* innerNonZerosPtr = 0)
      : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
    {}

    /** Empty destructor */
    inline ~Map() {}
};

template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
class Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType>
  : public SparseMapBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
{
  public:
    typedef SparseMapBase<Map> Base;
    EIGEN_SPARSE_PUBLIC_INTERFACE(Map)
    enum { IsRowMajor = Base::IsRowMajor };

  public:

    inline Map(Index rows, Index cols, Index nnz, const StorageIndex* outerIndexPtr,
               const StorageIndex* innerIndexPtr, const Scalar* valuePtr, const StorageIndex* innerNonZerosPtr = 0)
      : Base(rows, cols, nnz, outerIndexPtr, innerIndexPtr, valuePtr, innerNonZerosPtr)
    {}

    /** Empty destructor */
    inline ~Map() {}
};

namespace internal {

template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
struct evaluator<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
  : evaluator<SparseCompressedBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
{
  typedef evaluator<SparseCompressedBase<Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
  typedef Map<SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;  
  evaluator() : Base() {}
  explicit evaluator(const XprType &mat) : Base(mat) {}
};

template<typename MatScalar, int MatOptions, typename MatIndex, int Options, typename StrideType>
struct evaluator<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> >
  : evaluator<SparseCompressedBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > >
{
  typedef evaluator<SparseCompressedBase<Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> > > Base;
  typedef Map<const SparseMatrix<MatScalar,MatOptions,MatIndex>, Options, StrideType> XprType;  
  evaluator() : Base() {}
  explicit evaluator(const XprType &mat) : Base(mat) {}
};

}

} // end namespace Eigen

#endif // EIGEN_SPARSE_MAP_H