blob: 38bc4aa9ea01f508488409d1de71a9fdf82f3a02 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSE_DOT_H
#define EIGEN_SPARSE_DOT_H
namespace Eigen {
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
SparseMatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(size() == other.size());
eigen_assert(other.size()>0 && "you are using a non initialized vector");
internal::evaluator<Derived> thisEval(derived());
typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
Scalar res(0);
while (i)
{
res += numext::conj(i.value()) * other.coeff(i.index());
++i;
}
return res;
}
template<typename Derived>
template<typename OtherDerived>
typename internal::traits<Derived>::Scalar
SparseMatrixBase<Derived>::dot(const SparseMatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
eigen_assert(size() == other.size());
internal::evaluator<Derived> thisEval(derived());
typename internal::evaluator<Derived>::InnerIterator i(thisEval, 0);
internal::evaluator<OtherDerived> otherEval(other.derived());
typename internal::evaluator<OtherDerived>::InnerIterator j(otherEval, 0);
Scalar res(0);
while (i && j)
{
if (i.index()==j.index())
{
res += numext::conj(i.value()) * j.value();
++i; ++j;
}
else if (i.index()<j.index())
++i;
else
++j;
}
return res;
}
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
SparseMatrixBase<Derived>::squaredNorm() const
{
return numext::real((*this).cwiseAbs2().sum());
}
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
SparseMatrixBase<Derived>::norm() const
{
using std::sqrt;
return sqrt(squaredNorm());
}
template<typename Derived>
inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real
SparseMatrixBase<Derived>::blueNorm() const
{
return internal::blueNorm_impl(*this);
}
} // end namespace Eigen
#endif // EIGEN_SPARSE_DOT_H
|