aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseCore/AmbiVector.h
blob: 2cb7747cc999b716012040376c7ce05061e80d7b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_AMBIVECTOR_H
#define EIGEN_AMBIVECTOR_H

namespace Eigen { 

namespace internal {

/** \internal
  * Hybrid sparse/dense vector class designed for intensive read-write operations.
  *
  * See BasicSparseLLT and SparseProduct for usage examples.
  */
template<typename _Scalar, typename _StorageIndex>
class AmbiVector
{
  public:
    typedef _Scalar Scalar;
    typedef _StorageIndex StorageIndex;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    explicit AmbiVector(Index size)
      : m_buffer(0), m_zero(0), m_size(0), m_end(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1)
    {
      resize(size);
    }

    void init(double estimatedDensity);
    void init(int mode);

    Index nonZeros() const;

    /** Specifies a sub-vector to work on */
    void setBounds(Index start, Index end) { m_start = convert_index(start); m_end = convert_index(end); }

    void setZero();

    void restart();
    Scalar& coeffRef(Index i);
    Scalar& coeff(Index i);

    class Iterator;

    ~AmbiVector() { delete[] m_buffer; }

    void resize(Index size)
    {
      if (m_allocatedSize < size)
        reallocate(size);
      m_size = convert_index(size);
    }

    StorageIndex size() const { return m_size; }

  protected:
    StorageIndex convert_index(Index idx)
    {
      return internal::convert_index<StorageIndex>(idx);
    }

    void reallocate(Index size)
    {
      // if the size of the matrix is not too large, let's allocate a bit more than needed such
      // that we can handle dense vector even in sparse mode.
      delete[] m_buffer;
      if (size<1000)
      {
        Index allocSize = (size * sizeof(ListEl) + sizeof(Scalar) - 1)/sizeof(Scalar);
        m_allocatedElements = convert_index((allocSize*sizeof(Scalar))/sizeof(ListEl));
        m_buffer = new Scalar[allocSize];
      }
      else
      {
        m_allocatedElements = convert_index((size*sizeof(Scalar))/sizeof(ListEl));
        m_buffer = new Scalar[size];
      }
      m_size = convert_index(size);
      m_start = 0;
      m_end = m_size;
    }

    void reallocateSparse()
    {
      Index copyElements = m_allocatedElements;
      m_allocatedElements = (std::min)(StorageIndex(m_allocatedElements*1.5),m_size);
      Index allocSize = m_allocatedElements * sizeof(ListEl);
      allocSize = (allocSize + sizeof(Scalar) - 1)/sizeof(Scalar);
      Scalar* newBuffer = new Scalar[allocSize];
      std::memcpy(newBuffer,  m_buffer,  copyElements * sizeof(ListEl));
      delete[] m_buffer;
      m_buffer = newBuffer;
    }

  protected:
    // element type of the linked list
    struct ListEl
    {
      StorageIndex next;
      StorageIndex index;
      Scalar value;
    };

    // used to store data in both mode
    Scalar* m_buffer;
    Scalar m_zero;
    StorageIndex m_size;
    StorageIndex m_start;
    StorageIndex m_end;
    StorageIndex m_allocatedSize;
    StorageIndex m_allocatedElements;
    StorageIndex m_mode;

    // linked list mode
    StorageIndex m_llStart;
    StorageIndex m_llCurrent;
    StorageIndex m_llSize;
};

/** \returns the number of non zeros in the current sub vector */
template<typename _Scalar,typename _StorageIndex>
Index AmbiVector<_Scalar,_StorageIndex>::nonZeros() const
{
  if (m_mode==IsSparse)
    return m_llSize;
  else
    return m_end - m_start;
}

template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::init(double estimatedDensity)
{
  if (estimatedDensity>0.1)
    init(IsDense);
  else
    init(IsSparse);
}

template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::init(int mode)
{
  m_mode = mode;
  // This is only necessary in sparse mode, but we set these unconditionally to avoid some maybe-uninitialized warnings
  // if (m_mode==IsSparse)
  {
    m_llSize = 0;
    m_llStart = -1;
  }
}

/** Must be called whenever we might perform a write access
  * with an index smaller than the previous one.
  *
  * Don't worry, this function is extremely cheap.
  */
template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::restart()
{
  m_llCurrent = m_llStart;
}

/** Set all coefficients of current subvector to zero */
template<typename _Scalar,typename _StorageIndex>
void AmbiVector<_Scalar,_StorageIndex>::setZero()
{
  if (m_mode==IsDense)
  {
    for (Index i=m_start; i<m_end; ++i)
      m_buffer[i] = Scalar(0);
  }
  else
  {
    eigen_assert(m_mode==IsSparse);
    m_llSize = 0;
    m_llStart = -1;
  }
}

template<typename _Scalar,typename _StorageIndex>
_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeffRef(Index i)
{
  if (m_mode==IsDense)
    return m_buffer[i];
  else
  {
    ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
    // TODO factorize the following code to reduce code generation
    eigen_assert(m_mode==IsSparse);
    if (m_llSize==0)
    {
      // this is the first element
      m_llStart = 0;
      m_llCurrent = 0;
      ++m_llSize;
      llElements[0].value = Scalar(0);
      llElements[0].index = convert_index(i);
      llElements[0].next = -1;
      return llElements[0].value;
    }
    else if (i<llElements[m_llStart].index)
    {
      // this is going to be the new first element of the list
      ListEl& el = llElements[m_llSize];
      el.value = Scalar(0);
      el.index = convert_index(i);
      el.next = m_llStart;
      m_llStart = m_llSize;
      ++m_llSize;
      m_llCurrent = m_llStart;
      return el.value;
    }
    else
    {
      StorageIndex nextel = llElements[m_llCurrent].next;
      eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index");
      while (nextel >= 0 && llElements[nextel].index<=i)
      {
        m_llCurrent = nextel;
        nextel = llElements[nextel].next;
      }

      if (llElements[m_llCurrent].index==i)
      {
        // the coefficient already exists and we found it !
        return llElements[m_llCurrent].value;
      }
      else
      {
        if (m_llSize>=m_allocatedElements)
        {
          reallocateSparse();
          llElements = reinterpret_cast<ListEl*>(m_buffer);
        }
        eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode");
        // let's insert a new coefficient
        ListEl& el = llElements[m_llSize];
        el.value = Scalar(0);
        el.index = convert_index(i);
        el.next = llElements[m_llCurrent].next;
        llElements[m_llCurrent].next = m_llSize;
        ++m_llSize;
        return el.value;
      }
    }
  }
}

template<typename _Scalar,typename _StorageIndex>
_Scalar& AmbiVector<_Scalar,_StorageIndex>::coeff(Index i)
{
  if (m_mode==IsDense)
    return m_buffer[i];
  else
  {
    ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer);
    eigen_assert(m_mode==IsSparse);
    if ((m_llSize==0) || (i<llElements[m_llStart].index))
    {
      return m_zero;
    }
    else
    {
      Index elid = m_llStart;
      while (elid >= 0 && llElements[elid].index<i)
        elid = llElements[elid].next;

      if (llElements[elid].index==i)
        return llElements[m_llCurrent].value;
      else
        return m_zero;
    }
  }
}

/** Iterator over the nonzero coefficients */
template<typename _Scalar,typename _StorageIndex>
class AmbiVector<_Scalar,_StorageIndex>::Iterator
{
  public:
    typedef _Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    /** Default constructor
      * \param vec the vector on which we iterate
      * \param epsilon the minimal value used to prune zero coefficients.
      * In practice, all coefficients having a magnitude smaller than \a epsilon
      * are skipped.
      */
    explicit Iterator(const AmbiVector& vec, const RealScalar& epsilon = 0)
      : m_vector(vec)
    {
      using std::abs;
      m_epsilon = epsilon;
      m_isDense = m_vector.m_mode==IsDense;
      if (m_isDense)
      {
        m_currentEl = 0;   // this is to avoid a compilation warning
        m_cachedValue = 0; // this is to avoid a compilation warning
        m_cachedIndex = m_vector.m_start-1;
        ++(*this);
      }
      else
      {
        ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
        m_currentEl = m_vector.m_llStart;
        while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon)
          m_currentEl = llElements[m_currentEl].next;
        if (m_currentEl<0)
        {
          m_cachedValue = 0; // this is to avoid a compilation warning
          m_cachedIndex = -1;
        }
        else
        {
          m_cachedIndex = llElements[m_currentEl].index;
          m_cachedValue = llElements[m_currentEl].value;
        }
      }
    }

    StorageIndex index() const { return m_cachedIndex; }
    Scalar value() const { return m_cachedValue; }

    operator bool() const { return m_cachedIndex>=0; }

    Iterator& operator++()
    {
      using std::abs;
      if (m_isDense)
      {
        do {
          ++m_cachedIndex;
        } while (m_cachedIndex<m_vector.m_end && abs(m_vector.m_buffer[m_cachedIndex])<=m_epsilon);
        if (m_cachedIndex<m_vector.m_end)
          m_cachedValue = m_vector.m_buffer[m_cachedIndex];
        else
          m_cachedIndex=-1;
      }
      else
      {
        ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer);
        do {
          m_currentEl = llElements[m_currentEl].next;
        } while (m_currentEl>=0 && abs(llElements[m_currentEl].value)<=m_epsilon);
        if (m_currentEl<0)
        {
          m_cachedIndex = -1;
        }
        else
        {
          m_cachedIndex = llElements[m_currentEl].index;
          m_cachedValue = llElements[m_currentEl].value;
        }
      }
      return *this;
    }

  protected:
    const AmbiVector& m_vector; // the target vector
    StorageIndex m_currentEl;   // the current element in sparse/linked-list mode
    RealScalar m_epsilon;       // epsilon used to prune zero coefficients
    StorageIndex m_cachedIndex; // current coordinate
    Scalar m_cachedValue;       // current value
    bool m_isDense;             // mode of the vector
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_AMBIVECTOR_H