aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Sparse/TaucsSupport.h
blob: 4dddca7b622cdc31032ba69abcbe81919558a9fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TAUCSSUPPORT_H
#define EIGEN_TAUCSSUPPORT_H

template<typename Derived>
taucs_ccs_matrix SparseMatrixBase<Derived>::asTaucsMatrix()
{
  taucs_ccs_matrix res;
  res.n         = cols();
  res.m         = rows();
  res.flags     = 0;
  res.colptr    = derived()._outerIndexPtr();
  res.rowind    = derived()._innerIndexPtr();
  res.values.v  = derived()._valuePtr();
  if (ei_is_same_type<Scalar,int>::ret)
    res.flags |= TAUCS_INT;
  else if (ei_is_same_type<Scalar,float>::ret)
    res.flags |= TAUCS_SINGLE;
  else if (ei_is_same_type<Scalar,double>::ret)
    res.flags |= TAUCS_DOUBLE;
  else if (ei_is_same_type<Scalar,std::complex<float> >::ret)
    res.flags |= TAUCS_SCOMPLEX;
  else if (ei_is_same_type<Scalar,std::complex<double> >::ret)
    res.flags |= TAUCS_DCOMPLEX;
  else
  {
    ei_assert(false && "Scalar type not supported by TAUCS");
  }

  if (Flags & UpperTriangular)
    res.flags |= TAUCS_UPPER;
  if (Flags & LowerTriangular)
    res.flags |= TAUCS_LOWER;
  if (Flags & SelfAdjoint)
    res.flags |= (NumTraits<Scalar>::IsComplex ? TAUCS_HERMITIAN : TAUCS_SYMMETRIC);
  else if ((Flags & UpperTriangular) || (Flags & LowerTriangular))
    res.flags |= TAUCS_TRIANGULAR;

  return res;
}

template<typename Scalar, int Flags>
MappedSparseMatrix<Scalar,Flags>::MappedSparseMatrix(taucs_ccs_matrix& taucsMat)
{
  m_innerSize = taucsMat.m;
  m_outerSize = taucsMat.n;
  m_outerIndex = taucsMat.colptr;
  m_innerIndices = taucsMat.rowind;
  m_values = reinterpret_cast<Scalar*>(taucsMat.values.v);
  m_nnz = taucsMat.colptr[taucsMat.n];
}

template<typename MatrixType>
class SparseLLT<MatrixType,Taucs> : public SparseLLT<MatrixType>
{
  protected:
    typedef SparseLLT<MatrixType> Base;
    typedef typename Base::Scalar Scalar;
    typedef typename Base::RealScalar RealScalar;
    using Base::MatrixLIsDirty;
    using Base::SupernodalFactorIsDirty;
    using Base::m_flags;
    using Base::m_matrix;
    using Base::m_status;

  public:

    SparseLLT(int flags = 0)
      : Base(flags), m_taucsSupernodalFactor(0)
    {
    }

    SparseLLT(const MatrixType& matrix, int flags = 0)
      : Base(flags), m_taucsSupernodalFactor(0)
    {
      compute(matrix);
    }

    ~SparseLLT()
    {
      if (m_taucsSupernodalFactor)
        taucs_supernodal_factor_free(m_taucsSupernodalFactor);
    }

    inline const typename Base::CholMatrixType& matrixL(void) const;

    template<typename Derived>
    void solveInPlace(MatrixBase<Derived> &b) const;

    void compute(const MatrixType& matrix);

  protected:
    void* m_taucsSupernodalFactor;
};

template<typename MatrixType>
void SparseLLT<MatrixType,Taucs>::compute(const MatrixType& a)
{
  if (m_taucsSupernodalFactor)
  {
    taucs_supernodal_factor_free(m_taucsSupernodalFactor);
    m_taucsSupernodalFactor = 0;
  }

  if (m_flags & IncompleteFactorization)
  {
    taucs_ccs_matrix taucsMatA = const_cast<MatrixType&>(a).asTaucsMatrix();
    taucs_ccs_matrix* taucsRes = taucs_ccs_factor_llt(&taucsMatA, Base::m_precision, 0);
    // the matrix returned by Taucs is not necessarily sorted,
    // so let's copy it in two steps
    DynamicSparseMatrix<Scalar,RowMajor> tmp = MappedSparseMatrix<Scalar>(*taucsRes);
    m_matrix = tmp;
    free(taucsRes);
    m_status = (m_status & ~(CompleteFactorization|MatrixLIsDirty))
             | IncompleteFactorization
             | SupernodalFactorIsDirty;
  }
  else
  {
    taucs_ccs_matrix taucsMatA = const_cast<MatrixType&>(a).asTaucsMatrix();
    if ( (m_flags & SupernodalLeftLooking)
      || ((!(m_flags & SupernodalMultifrontal)) && (m_flags & MemoryEfficient)) )
    {
      m_taucsSupernodalFactor = taucs_ccs_factor_llt_ll(&taucsMatA);
    }
    else
    {
      // use the faster Multifrontal routine
      m_taucsSupernodalFactor = taucs_ccs_factor_llt_mf(&taucsMatA);
    }
    m_status = (m_status & ~IncompleteFactorization) | CompleteFactorization | MatrixLIsDirty;
  }
}

template<typename MatrixType>
inline const typename SparseLLT<MatrixType>::CholMatrixType&
SparseLLT<MatrixType,Taucs>::matrixL() const
{
  if (m_status & MatrixLIsDirty)
  {
    ei_assert(!(m_status & SupernodalFactorIsDirty));

    taucs_ccs_matrix* taucsL = taucs_supernodal_factor_to_ccs(m_taucsSupernodalFactor);

    // the matrix returned by Taucs is not necessarily sorted,
    // so let's copy it in two steps
    DynamicSparseMatrix<Scalar,RowMajor> tmp = MappedSparseMatrix<Scalar>(*taucsL);
    const_cast<typename Base::CholMatrixType&>(m_matrix) = tmp;
    free(taucsL);
    m_status = (m_status & ~MatrixLIsDirty);
  }
  return m_matrix;
}

template<typename MatrixType>
template<typename Derived>
void SparseLLT<MatrixType,Taucs>::solveInPlace(MatrixBase<Derived> &b) const
{
  bool inputIsCompatibleWithTaucs = (Derived::Flags&RowMajorBit)==0;

  if (!inputIsCompatibleWithTaucs)
  {
    matrixL();
    Base::solveInPlace(b);
  }
  else if (m_flags & IncompleteFactorization)
  {
    taucs_ccs_matrix taucsLLT = const_cast<typename Base::CholMatrixType&>(m_matrix).asTaucsMatrix();
    typename ei_plain_matrix_type<Derived>::type x(b.rows());
    for (int j=0; j<b.cols(); ++j)
    {
      taucs_ccs_solve_llt(&taucsLLT,x.data(),&b.col(j).coeffRef(0));
      b.col(j) = x;
    }
  }
  else
  {
    typename ei_plain_matrix_type<Derived>::type x(b.rows());
    for (int j=0; j<b.cols(); ++j)
    {
      taucs_supernodal_solve_llt(m_taucsSupernodalFactor,x.data(),&b.col(j).coeffRef(0));
      b.col(j) = x;
    }
  }
}

#endif // EIGEN_TAUCSSUPPORT_H