aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Sparse/SparseMatrix.h
blob: d3ee6e3b1a42199692d669e062c0d78b07921fa6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

template<typename _Scalar> class SparseMatrix;

/** \class SparseMatrix
  *
  * \brief Sparse matrix
  *
  * \param _Scalar the scalar type, i.e. the type of the coefficients
  *
  * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
  *
  */
template<typename _Scalar>
struct ei_traits<SparseMatrix<_Scalar> >
{
  typedef _Scalar Scalar;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = 0,
    CoeffReadCost = NumTraits<Scalar>::ReadCost
  };
};

template<typename _Scalar>
class SparseMatrix : public MatrixBase<SparseMatrix<_Scalar> >
{
  public:
    EIGEN_GENERIC_PUBLIC_INTERFACE(SparseMatrix)

  protected:

    int* m_colPtrs;
    SparseArray<Scalar> m_data;
    int m_rows;
    int m_cols;

    inline int rows() const { return m_rows; }
    inline int cols() const { return m_cols; }

    inline const Scalar& coeff(int row, int col) const
    {
      int id = m_colPtrs[col];
      int end = m_colPtrs[col+1];
      while (id<end && m_data.index(id)!=row)
      {
        ++id;
      }
      if (id==end)
        return 0;
      return m_data.value(id);
    }

    inline Scalar& coeffRef(int row, int col)
    {
      int id = m_colPtrs[cols];
      int end = m_colPtrs[cols+1];
      while (id<end && m_data.index(id)!=row)
      {
        ++id;
      }
      ei_assert(id!=end);
      return m_data.value(id);
    }

  public:

    class InnerIterator;

    inline int rows() const { return rows(); }
    inline int cols() const { return cols(); }
    /** \returns the number of non zero coefficients */
    inline int nonZeros() const  { return m_data.size(); }

    inline const Scalar& operator() (int row, int col) const
    {
      return coeff(row, col);
    }

    inline Scalar& operator() (int row, int col)
    {
      return coeffRef(row, col);
    }

    inline void startFill(int reserveSize = 1000)
    {
      m_data.clear();
      m_data.reserve(reserveSize);
      for (int i=0; i<=m_cols; ++i)
        m_colPtrs[i] = 0;
    }

    inline Scalar& fill(int row, int col)
    {
      if (m_colPtrs[col+1]==0)
      {
        int i=col;
        while (i>=0 && m_colPtrs[i]==0)
        {
          m_colPtrs[i] = m_data.size();
          --i;
        }
        m_colPtrs[col+1] = m_colPtrs[col];
      }
      assert(m_colPtrs[col+1] == m_data.size());
      int id = m_colPtrs[col+1];
      m_colPtrs[col+1]++;

      m_data.append(0, row);
      return m_data.value(id);
    }

    inline void endFill()
    {
      int size = m_data.size();
      int i = m_cols;
      // find the last filled column
      while (i>=0 && m_colPtrs[i]==0)
        --i;
      i++;
      while (i<=m_cols)
      {
        m_colPtrs[i] = size;
        ++i;
      }
    }

    void resize(int rows, int cols)
    {
      if (m_cols != cols)
      {
        delete[] m_colPtrs;
        m_colPtrs = new int [cols+1];
        m_rows = rows;
        m_cols = cols;
      }
    }

    inline SparseMatrix(int rows, int cols)
      : m_rows(0), m_cols(0), m_colPtrs(0)
    {
      resize(rows, cols);
    }

    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
      resize(other.rows(), other.cols());
      m_colPtrs = other.m_colPtrs;
      for (int col=0; col<=cols(); ++col)
        m_colPtrs[col] = other.m_colPtrs[col];
      m_data = other.m_data;
      return *this;
    }

    template<typename OtherDerived>
    inline SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)
    {
      resize(other.rows(), other.cols());
      startFill(std::max(m_rows,m_cols)*2);
      for (int col=0; col<cols(); ++col)
      {
        for (typename OtherDerived::InnerIterator it(other.derived(), col); it; ++it)
        {
          Scalar v = it.value();
          if (v!=Scalar(0))
            fill(it.index(),col) = v;
        }
      }
      endFill();
      return *this;
    }


    // old explicit operator+
//     template<typename Other>
//     SparseMatrix operator+(const Other& other)
//     {
//       SparseMatrix res(rows(), cols());
//       res.startFill(nonZeros()*3);
//       for (int col=0; col<cols(); ++col)
//       {
//         InnerIterator row0(*this,col);
//         typename Other::InnerIterator row1(other,col);
//         while (row0 && row1)
//         {
//           if (row0.index()==row1.index())
//           {
//             std::cout << "both " << col << " " << row0.index() << "\n";
//             Scalar v = row0.value() + row1.value();
//             if (v!=Scalar(0))
//               res.fill(row0.index(),col) = v;
//             ++row0;
//             ++row1;
//           }
//           else if (row0.index()<row1.index())
//           {
//             std::cout << "row0 " << col << " " << row0.index() << "\n";
//             Scalar v = row0.value();
//             if (v!=Scalar(0))
//               res.fill(row0.index(),col) = v;
//             ++row0;
//           }
//           else if (row1)
//           {
//             std::cout << "row1 " << col << " " << row0.index() << "\n";
//             Scalar v = row1.value();
//             if (v!=Scalar(0))
//               res.fill(row1.index(),col) = v;
//             ++row1;
//           }
//         }
//         while (row0)
//         {
//           std::cout << "row0 " << col << " " << row0.index() << "\n";
//           Scalar v = row0.value();
//           if (v!=Scalar(0))
//             res.fill(row0.index(),col) = v;
//           ++row0;
//         }
//         while (row1)
//         {
//           std::cout << "row1 " << col << " " << row1.index() << "\n";
//           Scalar v = row1.value();
//           if (v!=Scalar(0))
//             res.fill(row1.index(),col) = v;
//           ++row1;
//         }
//       }
//       res.endFill();
//       return res;
// //       return binaryOp(other, ei_scalar_sum_op<Scalar>());
//     }


    // WARNING for efficiency reason it currently outputs the transposed matrix
    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      s << "Nonzero entries:\n";
      for (uint i=0; i<m.nonZeros(); ++i)
      {
        s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
      }
      s << std::endl;
      s << std::endl;
      s << "Column pointers:\n";
      for (uint i=0; i<m.cols(); ++i)
      {
        s << m.m_colPtrs[i] << " ";
      }
      s << std::endl;
      s << std::endl;
      s << "Matrix (transposed):\n";
      for (int j=0; j<m.cols(); j++ )
      {
        int end = m.m_colPtrs[j+1];
        int i=0;
        for (int id=m.m_colPtrs[j]; id<end; id++)
        {
          int row = m.m_data.index(id);
          // fill with zeros
          for (int k=i; k<row; ++k)
            s << "0 ";
          i = row+1;
          s << m.m_data.value(id) << " ";
        }
        for (int k=i; k<m.rows(); ++k)
          s << "0 ";
        s << std::endl;
      }
      return s;
    }

    /** Destructor */
    inline ~SparseMatrix()
    {
      delete[] m_colPtrs;
    }
};

template<typename Scalar>
class SparseMatrix<Scalar>::InnerIterator
{
  public:
    InnerIterator(const SparseMatrix& mat, int col)
      : m_matrix(mat), m_id(mat.m_colPtrs[col]), m_start(m_id), m_end(mat.m_colPtrs[col+1])
    {}

    InnerIterator& operator++() { m_id++; return *this; }

    Scalar value() { return m_matrix.m_data.value(m_id); }

    int index() const { return m_matrix.m_data.index(m_id); }

    operator bool() const { return (m_id < m_end) && (m_id>=m_start); }

  protected:
    const SparseMatrix& m_matrix;
    int m_id;
    const int m_start;
    const int m_end;
};

#endif // EIGEN_SPARSEMATRIX_H