aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Sparse/SparseMatrix.h
blob: 8abe96e6d9f7d9cdbdf378ddbfd8728432a76eb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSEMATRIX_H
#define EIGEN_SPARSEMATRIX_H

/** \class SparseMatrix
  *
  * \brief Sparse matrix
  *
  * \param _Scalar the scalar type, i.e. the type of the coefficients
  *
  * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
  *
  */
template<typename _Scalar, int _Flags>
struct ei_traits<SparseMatrix<_Scalar, _Flags> >
{
  typedef _Scalar Scalar;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = SparseBit | _Flags,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    SupportedAccessPatterns = FullyCoherentAccessPattern
  };
};



template<typename _Scalar, int _Flags>
class SparseMatrix
  : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> >
{
  public:
    EIGEN_GENERIC_PUBLIC_INTERFACE(SparseMatrix)

  protected:
  public:

    typedef SparseMatrixBase<SparseMatrix> SparseBase;
    enum {
      RowMajor = SparseBase::RowMajor
    };
    typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(RowMajor?RowMajorBit:0)> TransposedSparseMatrix;

    int m_outerSize;
    int m_innerSize;
    int* m_outerIndex;
    SparseArray<Scalar> m_data;


  public:

    inline int rows() const { return RowMajor ? m_outerSize : m_innerSize; }
    inline int cols() const { return RowMajor ? m_innerSize : m_outerSize; }
    inline int innerSize() const { return m_innerSize; }
    inline int outerSize() const { return m_outerSize; }
    inline int innerNonZeros(int j) const { return m_outerIndex[j+1]-m_outerIndex[j]; }

    inline const Scalar* _valuePtr() const { return &m_data.value(0); }
    inline Scalar* _valuePtr() { return &m_data.value(0); }

    inline const int* _innerIndexPtr() const { return &m_data.index(0); }
    inline int* _innerIndexPtr() { return &m_data.index(0); }

    inline const int* _outerIndexPtr() const { return m_outerIndex; }
    inline int* _outerIndexPtr() { return m_outerIndex; }

    inline Scalar coeff(int row, int col) const
    {
      const int outer = RowMajor ? row : col;
      const int inner = RowMajor ? col : row;

      int start = m_outerIndex[outer];
      int end = m_outerIndex[outer+1];
      if (start==end)
        return Scalar(0);
      else if (end>0 && inner==m_data.index(end-1))
        return m_data.value(end-1);
      // ^^  optimization: let's first check if it is the last coefficient
      // (very common in high level algorithms)

      const int* r = std::lower_bound(&m_data.index(start),&m_data.index(end-1),inner);
      const int id = r-&m_data.index(0);
      return ((*r==inner) && (id<end)) ? m_data.value(id) : Scalar(0);
    }

    inline Scalar& coeffRef(int row, int col)
    {
      const int outer = RowMajor ? row : col;
      const int inner = RowMajor ? col : row;

      int start = m_outerIndex[outer];
      int end = m_outerIndex[outer+1];
      ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
      ei_assert(end>start && "coeffRef cannot be called on a zero coefficient");
      int* r = std::lower_bound(&m_data.index(start),&m_data.index(end),inner);
      const int id = r-&m_data.index(0);
      ei_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
      return m_data.value(id);
    }

  public:

    class InnerIterator;

    /** \returns the number of non zero coefficients */
    inline int nonZeros() const  { return m_data.size(); }

    /** Initializes the filling process of \c *this.
      * \param reserveSize approximate number of nonzeros
      * Note that the matrix \c *this is zero-ed.
      */
    inline void startFill(int reserveSize = 1000)
    {
      m_data.clear();
      m_data.reserve(reserveSize);
      for (int i=0; i<=m_outerSize; ++i)
        m_outerIndex[i] = 0;
    }

    /**
      */
    inline Scalar& fill(int row, int col)
    {
      const int outer = RowMajor ? row : col;
      const int inner = RowMajor ? col : row;

      if (m_outerIndex[outer+1]==0)
      {
        // we start a new inner vector
        int i = outer;
        while (i>=0 && m_outerIndex[i]==0)
        {
          m_outerIndex[i] = m_data.size();
          --i;
        }
        m_outerIndex[outer+1] = m_outerIndex[outer];
      }
      assert(m_outerIndex[outer+1] == m_data.size());
      int id = m_outerIndex[outer+1];
      ++m_outerIndex[outer+1];

      m_data.append(0, inner);
      return m_data.value(id);
    }

    /** Like fill() but with random inner coordinates.
      */
    inline Scalar& fillrand(int row, int col)
    {
      const int outer = RowMajor ? row : col;
      const int inner = RowMajor ? col : row;

      if (m_outerIndex[outer+1]==0)
      {
        // we start a new inner vector
        // nothing special to do here
        int i = outer;
        while (i>=0 && m_outerIndex[i]==0)
        {
          m_outerIndex[i] = m_data.size();
          --i;
        }
        m_outerIndex[outer+1] = m_outerIndex[outer];
      }
      //
      assert(m_outerIndex[outer+1] == m_data.size() && "invalid outer index");
      int startId = m_outerIndex[outer];
      int id = m_outerIndex[outer+1]-1;
      ++m_outerIndex[outer+1];
      m_data.resize(id+2);

      while ( (id >= startId) && (m_data.index(id) > inner) )
      {
        m_data.index(id+1) = m_data.index(id);
        m_data.value(id+1) = m_data.value(id);
        --id;
      }
      m_data.index(id+1) = inner;
      return (m_data.value(id+1) = 0);
    }

    inline void endFill()
    {
      int size = m_data.size();
      int i = m_outerSize;
      // find the last filled column
      while (i>=0 && m_outerIndex[i]==0)
        --i;
      ++i;
      while (i<=m_outerSize)
      {
        m_outerIndex[i] = size;
        ++i;
      }
    }

    void resize(int rows, int cols)
    {
      const int outerSize = RowMajor ? rows : cols;
      m_innerSize = RowMajor ? cols : rows;
      m_data.clear();
      if (m_outerSize != outerSize)
      {
        delete[] m_outerIndex;
        m_outerIndex = new int [outerSize+1];
        m_outerSize = outerSize;
      }
    }
    void resizeNonZeros(int size)
    {
      m_data.resize(size);
    }

    inline SparseMatrix()
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {}

    inline SparseMatrix(int rows, int cols)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      resize(rows, cols);
    }

    template<typename OtherDerived>
    inline SparseMatrix(const MatrixBase<OtherDerived>& other)
      : m_outerSize(0), m_innerSize(0), m_outerIndex(0)
    {
      *this = other.derived();
    }

    inline void swap(SparseMatrix& other)
    {
      //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
      std::swap(m_outerIndex, other.m_outerIndex);
      std::swap(m_innerSize, other.m_innerSize);
      std::swap(m_outerSize, other.m_outerSize);
      m_data.swap(other.m_data);
    }

    inline SparseMatrix& operator=(const SparseMatrix& other)
    {
//       std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n";
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else
      {
        resize(other.rows(), other.cols());
        memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(int));
        m_data = other.m_data;
      }
      return *this;
    }

    template<typename OtherDerived>
    inline SparseMatrix& operator=(const MatrixBase<OtherDerived>& other)
    {
      const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
      if (needToTranspose)
      {
        // two passes algorithm:
        //  1 - compute the number of coeffs per dest inner vector
        //  2 - do the actual copy/eval
        // Since each coeff of the rhs has to be evaluated twice, let's evauluate it if needed
        typedef typename ei_nested<OtherDerived,2>::type OtherCopy;
        OtherCopy otherCopy(other.derived());
        typedef typename ei_cleantype<OtherCopy>::type _OtherCopy;

        resize(other.rows(), other.cols());
        Eigen::Map<VectorXi>(m_outerIndex,outerSize()).setZero();
        // pass 1
        // FIXME the above copy could be merged with that pass
        for (int j=0; j<otherCopy.outerSize(); ++j)
          for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
            ++m_outerIndex[it.index()];

        // prefix sum
        int count = 0;
        VectorXi positions(outerSize());
        for (int j=0; j<outerSize(); ++j)
        {
          int tmp = m_outerIndex[j];
          m_outerIndex[j] = count;
          positions[j] = count;
          count += tmp;
        }
        m_outerIndex[outerSize()] = count;
        // alloc
        m_data.resize(count);
        // pass 2
        for (int j=0; j<otherCopy.outerSize(); ++j)
          for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
          {
            int pos = positions[it.index()]++;
            m_data.index(pos) = j;
            m_data.value(pos) = it.value();
          }

        return *this;
      }
      else
      {
        // there is no special optimization
        return SparseMatrixBase<SparseMatrix>::operator=(other.derived());
      }
    }

    friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
    {
      EIGEN_DBG_SPARSE(
        s << "Nonzero entries:\n";
        for (uint i=0; i<m.nonZeros(); ++i)
        {
          s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
        }
        s << std::endl;
        s << std::endl;
        s << "Column pointers:\n";
        for (uint i=0; i<m.cols(); ++i)
        {
          s << m.m_outerIndex[i] << " ";
        }
        s << std::endl;
        s << std::endl;
      );
      s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
      return s;
    }

    #ifdef EIGEN_TAUCS_SUPPORT
    static SparseMatrix Map(taucs_ccs_matrix& taucsMatrix);
    taucs_ccs_matrix asTaucsMatrix();
    #endif

    #ifdef EIGEN_CHOLMOD_SUPPORT
    static SparseMatrix Map(cholmod_sparse& cholmodMatrix);
    cholmod_sparse asCholmodMatrix();
    #endif

    #ifdef EIGEN_SUPERLU_SUPPORT
    static SparseMatrix Map(SluMatrix& sluMatrix);
    SluMatrix asSluMatrix();
    #endif

    /** Destructor */
    inline ~SparseMatrix()
    {
      delete[] m_outerIndex;
    }
};

template<typename Scalar, int _Flags>
class SparseMatrix<Scalar,_Flags>::InnerIterator
{
  public:
    InnerIterator(const SparseMatrix& mat, int outer)
      : m_matrix(mat), m_id(mat.m_outerIndex[outer]), m_start(m_id), m_end(mat.m_outerIndex[outer+1])
    {}

    template<unsigned int Added, unsigned int Removed>
    InnerIterator(const Flagged<SparseMatrix,Added,Removed>& mat, int outer)
      : m_matrix(mat._expression()), m_id(m_matrix.m_outerIndex[outer]),
        m_start(m_id), m_end(m_matrix.m_outerIndex[outer+1])
    {}

    InnerIterator& operator++() { m_id++; return *this; }

    Scalar value() const { return m_matrix.m_data.value(m_id); }

    int index() const { return m_matrix.m_data.index(m_id); }

    operator bool() const { return (m_id < m_end) && (m_id>=m_start); }

  protected:
    const SparseMatrix& m_matrix;
    int m_id;
    const int m_start;
    const int m_end;
};

#endif // EIGEN_SPARSEMATRIX_H