aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Sparse/SparseLLT.h
blob: 0b63f80ab46fe4f4a5c2d22d9c74b8c0cc5eb756 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSELLT_H
#define EIGEN_SPARSELLT_H

/** \ingroup Sparse_Module
  *
  * \class SparseLLT
  *
  * \brief LLT Cholesky decomposition of a sparse matrix and associated features
  *
  * \param MatrixType the type of the matrix of which we are computing the LLT Cholesky decomposition
  *
  * \sa class LLT, class LDLT
  */
template<typename MatrixType, int Backend = DefaultBackend>
class SparseLLT
{
  protected:
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef SparseMatrix<Scalar,LowerTriangular> CholMatrixType;

    enum {
      SupernodalFactorIsDirty      = 0x10000,
      MatrixLIsDirty               = 0x20000
    };

  public:

    /** Creates a dummy LLT factorization object with flags \a flags. */
    SparseLLT(int flags = 0)
      : m_flags(flags), m_status(0)
    {
      m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
    }

    /** Creates a LLT object and compute the respective factorization of \a matrix using
      * flags \a flags. */
    SparseLLT(const MatrixType& matrix, int flags = 0)
      : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
    {
      m_precision = RealScalar(0.1) * Eigen::precision<RealScalar>();
      compute(matrix);
    }

    /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
      *
      * Setting a value greater than zero speeds up computation, and yields to an imcomplete
      * factorization with fewer non zero coefficients. Such approximate factors are especially
      * useful to initialize an iterative solver.
      *
      * \warning if precision is greater that zero, the LLT factorization is not guaranteed to succeed
      * even if the matrix is positive definite.
      *
      * Note that the exact meaning of this parameter might depends on the actual
      * backend. Moreover, not all backends support this feature.
      *
      * \sa precision() */
    void setPrecision(RealScalar v) { m_precision = v; }

    /** \returns the current precision.
      *
      * \sa setPrecision() */
    RealScalar precision() const { return m_precision; }

    /** Sets the flags. Possible values are:
      *  - CompleteFactorization
      *  - IncompleteFactorization
      *  - MemoryEfficient          (hint to use the memory most efficient method offered by the backend)
      *  - SupernodalMultifrontal   (implies a complete factorization if supported by the backend,
      *                              overloads the MemoryEfficient flags)
      *  - SupernodalLeftLooking    (implies a complete factorization  if supported by the backend,
      *                              overloads the MemoryEfficient flags)
      *
      * \sa flags() */
    void setFlags(int f) { m_flags = f; }
    /** \returns the current flags */
    int flags() const { return m_flags; }

    /** Computes/re-computes the LLT factorization */
    void compute(const MatrixType& matrix);

    /** \returns the lower triangular matrix L */
    inline const CholMatrixType& matrixL(void) const { return m_matrix; }

    template<typename Derived>
    bool solveInPlace(MatrixBase<Derived> &b) const;

    /** \returns true if the factorization succeeded */
    inline bool succeeded(void) const { return m_succeeded; }

  protected:
    CholMatrixType m_matrix;
    RealScalar m_precision;
    int m_flags;
    mutable int m_status;
    bool m_succeeded;
};

/** Computes / recomputes the LLT decomposition of matrix \a a
  * using the default algorithm.
  */
template<typename MatrixType, int Backend>
void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
{
  assert(a.rows()==a.cols());
  const int size = a.rows();
  m_matrix.resize(size, size);

  // allocate a temporary vector for accumulations
  AmbiVector<Scalar> tempVector(size);
  RealScalar density = a.nonZeros()/RealScalar(size*size);

  // TODO estimate the number of non zeros
  m_matrix.startFill(a.nonZeros()*2);
  for (int j = 0; j < size; ++j)
  {
    Scalar x = ei_real(a.coeff(j,j));

    // TODO better estimate of the density !
    tempVector.init(density>0.001? IsDense : IsSparse);
    tempVector.setBounds(j+1,size);
    tempVector.setZero();
    // init with current matrix a
    {
      typename MatrixType::InnerIterator it(a,j);
      ++it; // skip diagonal element
      for (; it; ++it)
        tempVector.coeffRef(it.index()) = it.value();
    }
    for (int k=0; k<j+1; ++k)
    {
      typename CholMatrixType::InnerIterator it(m_matrix, k);
      while (it && it.index()<j)
        ++it;
      if (it && it.index()==j)
      {
        Scalar y = it.value();
        x -= ei_abs2(y);
        ++it; // skip j-th element, and process remaining column coefficients
        tempVector.restart();
        for (; it; ++it)
        {
          tempVector.coeffRef(it.index()) -= it.value() * y;
        }
      }
    }
    // copy the temporary vector to the respective m_matrix.col()
    // while scaling the result by 1/real(x)
    RealScalar rx = ei_sqrt(ei_real(x));
    m_matrix.fill(j,j) = rx;
    Scalar y = Scalar(1)/rx;
    for (typename AmbiVector<Scalar>::Iterator it(tempVector, m_precision*rx); it; ++it)
    {
      m_matrix.fill(it.index(), j) = it.value() * y;
    }
  }
  m_matrix.endFill();
}

/** Computes b = L^-T L^-1 b */
template<typename MatrixType, int Backend>
template<typename Derived>
bool SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
{
  const int size = m_matrix.rows();
  ei_assert(size==b.rows());

  m_matrix.solveTriangularInPlace(b);
  // FIXME should be .adjoint() but it fails to compile...
  m_matrix.transpose().solveTriangularInPlace(b);

  return true;
}

#endif // EIGEN_SPARSELLT_H