aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Sparse/SparseCholesky.h
blob: 5af84ebed4550a6d67d8b602e5157de7977b8cbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_SPARSECHOLESKY_H
#define EIGEN_SPARSECHOLESKY_H

enum {
  CholFull        = 0x0,  // full is the default
  CholPartial     = 0x1,
  CholUseEigen    = 0x0,  // Eigen's impl is the default
  CholUseTaucs    = 0x2,
  CholUseCholmod  = 0x4,
};

/** \ingroup Sparse_Module
  *
  * \class SparseCholesky
  *
  * \brief Standard Cholesky decomposition of a matrix and associated features
  *
  * \param MatrixType the type of the matrix of which we are computing the Cholesky decomposition
  *
  * \sa class Cholesky, class CholeskyWithoutSquareRoot
  */
template<typename MatrixType> class SparseCholesky
{
  private:
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
    typedef SparseMatrix<Scalar,Lower> CholMatrixType;

    enum {
      PacketSize = ei_packet_traits<Scalar>::size,
      AlignmentMask = int(PacketSize)-1
    };

  public:

    SparseCholesky(const MatrixType& matrix, int flags = 0)
      : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags)
    {
      compute(matrix);
    }

    inline const CholMatrixType& matrixL(void) const { return m_matrix; }

    /** \returns true if the matrix is positive definite */
    inline bool isPositiveDefinite(void) const { return m_isPositiveDefinite; }

    // TODO impl the solver
//     template<typename Derived>
//     typename Derived::Eval solve(const MatrixBase<Derived> &b) const;

    void compute(const MatrixType& matrix);

  protected:
    void computeUsingEigen(const MatrixType& matrix);
    void computeUsingTaucs(const MatrixType& matrix);
    void computeUsingCholmod(const MatrixType& matrix);

  protected:
    /** \internal
      * Used to compute and store L
      * The strict upper part is not used and even not initialized.
      */
    CholMatrixType m_matrix;
    int m_flags;
    bool m_isPositiveDefinite;
};

/** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix
  */
template<typename MatrixType>
void SparseCholesky<MatrixType>::compute(const MatrixType& a)
{
  if (m_flags&CholUseTaucs)
    computeUsingTaucs(a);
  else if (m_flags&CholUseCholmod)
    computeUsingCholmod(a);
  else
    computeUsingEigen(a);
}

template<typename MatrixType>
void SparseCholesky<MatrixType>::computeUsingEigen(const MatrixType& a)
{
  assert(a.rows()==a.cols());
  const int size = a.rows();
  m_matrix.resize(size, size);
  const RealScalar eps = ei_sqrt(precision<Scalar>());

  // allocate a temporary vector for accumulations
  AmbiVector<Scalar> tempVector(size);

  // TODO estimate the number of nnz
  m_matrix.startFill(a.nonZeros()*2);
  for (int j = 0; j < size; ++j)
  {
//     std::cout << j << "\n";
    Scalar x = ei_real(a.coeff(j,j));
    int endSize = size-j-1;

    // TODO estimate the number of non zero entries
//       float ratioLhs = float(lhs.nonZeros())/float(lhs.rows()*lhs.cols());
//       float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols);
//       float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f);

        // let's do a more accurate determination of the nnz ratio for the current column j of res
        //float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f);
        // FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector)
//         float ratioColRes = ratioRes;
//         if (ratioColRes>0.1)
//     tempVector.init(IsSparse);
    tempVector.init(IsDense);
    tempVector.setBounds(j+1,size);
    tempVector.setZero();
    // init with current matrix a
    {
      typename MatrixType::InnerIterator it(a,j);
      ++it; // skip diagonal element
      for (; it; ++it)
        tempVector.coeffRef(it.index()) = it.value();
    }
    for (int k=0; k<j+1; ++k)
    {
      typename MatrixType::InnerIterator it(m_matrix, k);
      while (it && it.index()<j)
        ++it;
      if (it && it.index()==j)
      {
        Scalar y = it.value();
        x -= ei_abs2(y);
        ++it; // skip j-th element, and process remaing column coefficients
        tempVector.restart();
        for (; it; ++it)
        {
          tempVector.coeffRef(it.index()) -= it.value() * y;
        }
      }
    }
    // copy the temporary vector to the respective m_matrix.col()
    // while scaling the result by 1/real(x)
    RealScalar rx = ei_sqrt(ei_real(x));
    m_matrix.fill(j,j) = rx;
    Scalar y = Scalar(1)/rx;
    for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it)
    {
      m_matrix.fill(it.index(), j) = it.value() * y;
    }
  }
  m_matrix.endFill();
}

#endif // EIGEN_BASICSPARSECHOLESKY_H