aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Sparse/RandomSetter.h
blob: 35bc9daee153c0e79956e2d738bfcde2d34d4427 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_RANDOMSETTER_H
#define EIGEN_RANDOMSETTER_H

template<typename Scalar> struct StdMapTraits
{
  typedef int KeyType;
  typedef std::map<KeyType,Scalar> Type;
  enum {
    IsSorted = 1
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};

#ifdef _HASH_MAP
template<typename Scalar> struct GnuHashMapTraits
{
  typedef int KeyType;
  typedef __gnu_cxx::hash_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};
#endif

#ifdef _DENSE_HASH_MAP_H_
template<typename Scalar> struct GoogleDenseHashMapTraits
{
  typedef int KeyType;
  typedef google::dense_hash_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type& map, const KeyType& k)
  { map.set_empty_key(k); }
};
#endif

#ifdef _SPARSE_HASH_MAP_H_
template<typename Scalar> struct GoogleSparseHashMapTraits
{
  typedef int KeyType;
  typedef google::sparse_hash_map<KeyType,Scalar> Type;
  enum {
    IsSorted = 0
  };

  static void setInvalidKey(Type&, const KeyType&) {}
};
#endif

/** \class RandomSetter
  *
  * Typical usage:
  * \code
  * SparseMatrix<double> m(rows,cols);
  * {
  *   RandomSetter<SparseMatrix<double> > w(m);
  *   // don't use m but w instead with read/write random access to the coefficients:
  *   for(;;)
  *     w(rand(),rand()) = rand;
  * }
  * // when w is deleted, the data are copied back to m
  * // and m is ready to use.
  * \endcode
  *
  * \note for performance and memory consumption reasons it is highly recommended to use
  * Google's hash library. To do so you have two options:
  *  - include <google/dense_hash_map> yourself \b before Eigen/Sparse header
  *  - define EIGEN_GOOGLEHASH_SUPPORT
  * In the later case the inclusion of <google/dense_hash_map> is made for you.
  */
template<typename SparseMatrixType,
         template <typename T> class MapTraits =
#if defined _DENSE_HASH_MAP_H_
          GoogleDenseHashMapTraits
#elif defined _HASH_MAP
          GnuHashMapTraits
#else
          StdMapTraits
#endif
         ,int OuterPacketBits = 6>
class RandomSetter
{
    typedef typename ei_traits<SparseMatrixType>::Scalar Scalar;
    struct ScalarWrapper
    {
      ScalarWrapper() : value(0) {}
      Scalar value;
    };
    typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
    typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
    static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
    enum {
      SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
      TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
      SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor
    };

  public:

    inline RandomSetter(SparseMatrixType& target)
      : mp_target(&target)
    {
      const int outerSize = SwapStorage ? target.innerSize() : target.outerSize();
      const int innerSize = SwapStorage ? target.outerSize() : target.innerSize();
      m_outerPackets = outerSize >> OuterPacketBits;
      if (outerSize&OuterPacketMask)
        m_outerPackets += 1;
      m_hashmaps = new HashMapType[m_outerPackets];
      // compute number of bits needed to store inner indices
      int aux = innerSize - 1;
      m_keyBitsOffset = 0;
      while (aux)
      {
        m_keyBitsOffset++;
        aux = aux >> 1;
      }
      KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
      for (int k=0; k<m_outerPackets; ++k)
        MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);

      // insert current coeffs
      for (int j=0; j<mp_target->outerSize(); ++j)
        for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
          (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
    }

    ~RandomSetter()
    {
      KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
      if (!SwapStorage) // also means the map is sorted
      {
        mp_target->startFill(nonZeros());
        for (int k=0; k<m_outerPackets; ++k)
        {
          const int outerOffset = (1<<OuterPacketBits) * k;
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const int outer = (it->first >> m_keyBitsOffset) + outerOffset;
            const int inner = it->first & keyBitsMask;
            mp_target->fill(TargetRowMajor ? outer : inner, TargetRowMajor ? inner : outer) = it->second.value;
          }
        }
        mp_target->endFill();
      }
      else
      {
        VectorXi positions(mp_target->outerSize());
        positions.setZero();
        // pass 1
        for (int k=0; k<m_outerPackets; ++k)
        {
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const int outer = it->first & keyBitsMask;
            positions[outer]++;
          }
        }
        // prefix sum
        int count = 0;
        for (int j=0; j<mp_target->outerSize(); ++j)
        {
          int tmp = positions[j];
          mp_target->_outerIndexPtr()[j] = count;
          positions[j] = count;
          count += tmp;
        }
        mp_target->_outerIndexPtr()[mp_target->outerSize()] = count;
        mp_target->resizeNonZeros(count);
        // pass 2
        for (int k=0; k<m_outerPackets; ++k)
        {
          const int outerOffset = (1<<OuterPacketBits) * k;
          typename HashMapType::iterator end = m_hashmaps[k].end();
          for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
          {
            const int inner = (it->first >> m_keyBitsOffset) + outerOffset;
            const int outer = it->first & keyBitsMask;
            // sorted insertion
            // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
            // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
            // small fraction of them have to be sorted, whence the following simple procedure:
            int posStart = mp_target->_outerIndexPtr()[outer];
            int i = (positions[outer]++) - 1;
            while ( (i >= posStart) && (mp_target->_innerIndexPtr()[i] > inner) )
            {
              mp_target->_valuePtr()[i+1] = mp_target->_valuePtr()[i];
              mp_target->_innerIndexPtr()[i+1] = mp_target->_innerIndexPtr()[i];
              --i;
            }
            mp_target->_innerIndexPtr()[i+1] = inner;
            mp_target->_valuePtr()[i+1] = it->second.value;
          }
        }
      }
      delete[] m_hashmaps;
    }

    Scalar& operator() (int row, int col)
    {
      const int outer = SetterRowMajor ? row : col;
      const int inner = SetterRowMajor ? col : row;
      const int outerMajor = outer >> OuterPacketBits; // index of the packet/map
      const int outerMinor = outer & OuterPacketMask;  // index of the inner vector in the packet
      const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
      return m_hashmaps[outerMajor][key].value;
    }

    // might be slow
    int nonZeros() const
    {
      int nz = 0;
      for (int k=0; k<m_outerPackets; ++k)
        nz += m_hashmaps[k].size();
      return nz;
    }


  protected:

    HashMapType* m_hashmaps;
    SparseMatrixType* mp_target;
    int m_outerPackets;
    unsigned char m_keyBitsOffset;
};

#endif // EIGEN_RANDOMSETTER_H