aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/Sparse/LinkedVectorMatrix.h
blob: dc34aced6fd2884a58d6f505b9b67e475c6a03f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_LINKEDVECTORMATRIX_H
#define EIGEN_LINKEDVECTORMATRIX_H

template<typename _Scalar, int _Flags>
struct ei_traits<LinkedVectorMatrix<_Scalar,_Flags> >
{
  typedef _Scalar Scalar;
  enum {
    RowsAtCompileTime = Dynamic,
    ColsAtCompileTime = Dynamic,
    MaxRowsAtCompileTime = Dynamic,
    MaxColsAtCompileTime = Dynamic,
    Flags = SparseBit | _Flags,
    CoeffReadCost = NumTraits<Scalar>::ReadCost,
    SupportedAccessPatterns = InnerCoherentAccessPattern
  };
};

template<typename Element, int ChunkSize = 8>
struct LinkedVectorChunk
{
  LinkedVectorChunk() : size(0), next(0), prev(0) {}
  Element data[ChunkSize];
  LinkedVectorChunk* next;
  LinkedVectorChunk* prev;
  int size;
  bool isFull() const { return size==ChunkSize; }
};

template<typename _Scalar, int _Flags>
class LinkedVectorMatrix
  : public SparseMatrixBase<LinkedVectorMatrix<_Scalar,_Flags> >
{
  public:
    EIGEN_GENERIC_PUBLIC_INTERFACE(LinkedVectorMatrix)
    class InnerIterator;
  protected:

    enum {
      RowMajor = Flags&RowMajorBit ? 1 : 0
    };

    struct ValueIndex
    {
      ValueIndex() : value(0), index(0) {}
      ValueIndex(Scalar v, int i) : value(v), index(i) {}
      Scalar value;
      int index;
    };
    typedef LinkedVectorChunk<ValueIndex,8> VectorChunk;

    inline int find(VectorChunk** _el, int id)
    {
      VectorChunk* el = *_el;
      while (el && el->data[el->size-1].index<id)
        el = el->next;
      *_el = el;
      if (el)
      {
        // binary search
        int maxI = el->size-1;
        int minI = 0;
        int i = el->size/2;
        const ValueIndex* data = el->data;
        while (data[i].index!=id)
        {
          if (data[i].index<id)
          {
            minI = i+1;
            i = (maxI + minI)+2;
          }
          else
          {
            maxI = i-1;
            i = (maxI + minI)+2;
          }
          if (minI>=maxI)
            return -1;
        }
        if (data[i].index==id)
          return i;
      }
      return -1;
    }

  public:
    inline int rows() const { return RowMajor ? m_data.size() : m_innerSize; }
    inline int cols() const { return RowMajor ? m_innerSize : m_data.size(); }

    inline const Scalar& coeff(int row, int col) const
    {
      const int outer = RowMajor ? row : col;
      const int inner = RowMajor ? col : row;

      VectorChunk* el = m_data[outer];
      int id = find(&el, inner);
      if (id<0)
        return Scalar(0);
      return el->data[id].value;
    }

    inline Scalar& coeffRef(int row, int col)
    {
      const int outer = RowMajor ? row : col;
      const int inner = RowMajor ? col : row;

      VectorChunk* el = m_data[outer];
      int id = find(&el, inner);
      ei_assert(id>=0);
//       if (id<0)
//         return Scalar(0);
      return el->data[id].value;
    }

  public:

    inline void startFill(int reserveSize = 1000)
    {
      clear();
      for (int i=0; i<m_data.size(); ++i)
        m_ends[i] = m_data[i] = 0;
    }

    inline Scalar& fill(int row, int col)
    {
      const int outer = RowMajor ? row : col;
      const int inner = RowMajor ? col : row;
      if (m_ends[outer]==0)
      {
        m_data[outer] = m_ends[outer] = new VectorChunk();
      }
      else
      {
        ei_assert(m_ends[outer]->data[m_ends[outer]->size-1].index < inner);
        if (m_ends[outer]->isFull())
        {

          VectorChunk* el = new VectorChunk();
          m_ends[outer]->next = el;
          el->prev = m_ends[outer];
          m_ends[outer] = el;
        }
      }
      m_ends[outer]->data[m_ends[outer]->size].index = inner;
      return m_ends[outer]->data[m_ends[outer]->size++].value;
    }

    inline void endFill() { }

    ~LinkedVectorMatrix()
    {
      clear();
    }

    void clear()
    {
      for (int i=0; i<m_data.size(); ++i)
      {
        VectorChunk* el = m_data[i];
        while (el)
        {
          VectorChunk* tmp = el;
          el = el->next;
          delete tmp;
        }
      }
    }

    void resize(int rows, int cols)
    {
      const int outers = RowMajor ? rows : cols;
      const int inners = RowMajor ? cols : rows;

      if (this->outerSize() != outers)
      {
        clear();
        m_data.resize(outers);
        m_ends.resize(outers);
        for (int i=0; i<m_data.size(); ++i)
          m_ends[i] = m_data[i] = 0;
      }
      m_innerSize = inners;
    }

    inline LinkedVectorMatrix(int rows, int cols)
      : m_innerSize(0)
    {
      resize(rows, cols);
    }

    template<typename OtherDerived>
    inline LinkedVectorMatrix(const MatrixBase<OtherDerived>& other)
      : m_innerSize(0)
    {
      *this = other.derived();
    }

    inline void swap(LinkedVectorMatrix& other)
    {
      EIGEN_DBG_SPARSE(std::cout << "LinkedVectorMatrix:: swap\n");
      resize(other.rows(), other.cols());
      m_data.swap(other.m_data);
      m_ends.swap(other.m_ends);
    }

    inline LinkedVectorMatrix& operator=(const LinkedVectorMatrix& other)
    {
      if (other.isRValue())
      {
        swap(other.const_cast_derived());
      }
      else
      {
        // TODO implement a specialized deep copy here
        return operator=<LinkedVectorMatrix>(other);
      }
      return *this;
    }

    template<typename OtherDerived>
    inline LinkedVectorMatrix& operator=(const MatrixBase<OtherDerived>& other)
    {
      return SparseMatrixBase<LinkedVectorMatrix>::operator=(other.derived());
    }

  protected:

    // outer vector of inner linked vector chunks
    std::vector<VectorChunk*> m_data;
    // stores a reference to the last vector chunk for efficient filling
    std::vector<VectorChunk*> m_ends;
    int m_innerSize;

};


template<typename Scalar, int _Flags>
class LinkedVectorMatrix<Scalar,_Flags>::InnerIterator
{
  public:

    InnerIterator(const LinkedVectorMatrix& mat, int col)
      : m_matrix(mat), m_el(mat.m_data[col]), m_it(0)
    {}

    InnerIterator& operator++() { if (m_it<m_el->size) m_it++; else {m_el = m_el->next; m_it=0;}; return *this; }

    Scalar value() { return m_el->data[m_it].value; }

    int index() const { return m_el->data[m_it].index; }

    operator bool() const { return m_el && (m_el->next || m_it<m_el->size); }

  protected:
    const LinkedVectorMatrix& m_matrix;
    VectorChunk* m_el;
    int m_it;
};

#endif // EIGEN_LINKEDVECTORMATRIX_H