1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H
// forward declarations (needed by ICC)
// the empty bodies are required by VC
template<typename MatrixType, unsigned int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct ei_svd_precondition_2x2_block_to_be_real {};
template<typename MatrixType, unsigned int Options,
bool PossiblyMoreRowsThanCols = (Options & AtLeastAsManyColsAsRows) == 0
&& (MatrixType::RowsAtCompileTime==Dynamic
|| (MatrixType::RowsAtCompileTime>MatrixType::ColsAtCompileTime))>
struct ei_svd_precondition_if_more_rows_than_cols;
template<typename MatrixType, unsigned int Options,
bool PossiblyMoreColsThanRows = (Options & AtLeastAsManyRowsAsCols) == 0
&& (MatrixType::ColsAtCompileTime==Dynamic
|| (MatrixType::ColsAtCompileTime>MatrixType::RowsAtCompileTime))>
struct ei_svd_precondition_if_more_cols_than_rows;
/** \ingroup SVD_Module
*
*
* \class JacobiSVD
*
* \brief Jacobi SVD decomposition of a square matrix
*
* \param MatrixType the type of the matrix of which we are computing the SVD decomposition
* \param Options a bit field of flags offering the following options: \c SkipU and \c SkipV allow to skip the computation of
* the unitaries \a U and \a V respectively; \c AtLeastAsManyRowsAsCols and \c AtLeastAsManyRowsAsCols allows
* to hint the compiler to only generate the corresponding code paths; \c Square is equivantent to the combination of
* the latter two bits and is useful when you know that the matrix is square. Note that when this information can
* be automatically deduced from the matrix type (e.g. a Matrix3f is always square), Eigen does it for you.
*
* \sa MatrixBase::jacobiSvd()
*/
template<typename MatrixType, unsigned int Options> class JacobiSVD
{
private:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef typename MatrixType::Index Index;
enum {
ComputeU = (Options & SkipU) == 0,
ComputeV = (Options & SkipV) == 0,
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
MatrixOptions = MatrixType::Options
};
typedef Matrix<Scalar, Dynamic, Dynamic, MatrixOptions> DummyMatrixType;
typedef typename ei_meta_if<ComputeU,
Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
DummyMatrixType>::ret MatrixUType;
typedef typename ei_meta_if<ComputeV,
Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>,
DummyMatrixType>::ret MatrixVType;
typedef typename ei_plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
typedef typename ei_plain_row_type<MatrixType>::type RowType;
typedef typename ei_plain_col_type<MatrixType>::type ColType;
typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime,
MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime>
WorkMatrixType;
public:
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via JacobiSVD::compute(const MatrixType&).
*/
JacobiSVD() : m_isInitialized(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa JacobiSVD()
*/
JacobiSVD(Index rows, Index cols) : m_matrixU(rows, rows),
m_matrixV(cols, cols),
m_singularValues(std::min(rows, cols)),
m_workMatrix(rows, cols),
m_isInitialized(false) {}
JacobiSVD(const MatrixType& matrix) : m_matrixU(matrix.rows(), matrix.rows()),
m_matrixV(matrix.cols(), matrix.cols()),
m_singularValues(),
m_workMatrix(),
m_isInitialized(false)
{
const Index minSize = std::min(matrix.rows(), matrix.cols());
m_singularValues.resize(minSize);
m_workMatrix.resize(minSize, minSize);
compute(matrix);
}
JacobiSVD& compute(const MatrixType& matrix);
const MatrixUType& matrixU() const
{
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
return m_matrixU;
}
const SingularValuesType& singularValues() const
{
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
return m_singularValues;
}
const MatrixVType& matrixV() const
{
ei_assert(m_isInitialized && "JacobiSVD is not initialized.");
return m_matrixV;
}
protected:
MatrixUType m_matrixU;
MatrixVType m_matrixV;
SingularValuesType m_singularValues;
WorkMatrixType m_workMatrix;
bool m_isInitialized;
template<typename _MatrixType, unsigned int _Options, bool _IsComplex>
friend struct ei_svd_precondition_2x2_block_to_be_real;
template<typename _MatrixType, unsigned int _Options, bool _PossiblyMoreRowsThanCols>
friend struct ei_svd_precondition_if_more_rows_than_cols;
template<typename _MatrixType, unsigned int _Options, bool _PossiblyMoreRowsThanCols>
friend struct ei_svd_precondition_if_more_cols_than_rows;
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, false>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename SVD::Index Index;
static void run(typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&, Index, Index) {}
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename SVD::Index Index;
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
static void run(typename SVD::WorkMatrixType& work_matrix, JacobiSVD<MatrixType, Options>& svd, Index p, Index q)
{
Scalar z;
PlanarRotation<Scalar> rot;
RealScalar n = ei_sqrt(ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(q,p)));
if(n==0)
{
z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.row(p) *= z;
if(ComputeU) svd.m_matrixU.col(p) *= ei_conj(z);
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
}
else
{
rot.c() = ei_conj(work_matrix.coeff(p,p)) / n;
rot.s() = work_matrix.coeff(q,p) / n;
work_matrix.applyOnTheLeft(p,q,rot);
if(ComputeU) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint());
if(work_matrix.coeff(p,q) != Scalar(0))
{
Scalar z = ei_abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
work_matrix.col(q) *= z;
if(ComputeV) svd.m_matrixV.col(q) *= z;
}
if(work_matrix.coeff(q,q) != Scalar(0))
{
z = ei_abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
work_matrix.row(q) *= z;
if(ComputeU) svd.m_matrixU.col(q) *= ei_conj(z);
}
}
}
};
template<typename MatrixType, typename RealScalar, typename Index>
void ei_real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
PlanarRotation<RealScalar> *j_left,
PlanarRotation<RealScalar> *j_right)
{
Matrix<RealScalar,2,2> m;
m << ei_real(matrix.coeff(p,p)), ei_real(matrix.coeff(p,q)),
ei_real(matrix.coeff(q,p)), ei_real(matrix.coeff(q,q));
PlanarRotation<RealScalar> rot1;
RealScalar t = m.coeff(0,0) + m.coeff(1,1);
RealScalar d = m.coeff(1,0) - m.coeff(0,1);
if(t == RealScalar(0))
{
rot1.c() = 0;
rot1.s() = d > 0 ? 1 : -1;
}
else
{
RealScalar u = d / t;
rot1.c() = RealScalar(1) / ei_sqrt(1 + ei_abs2(u));
rot1.s() = rot1.c() * u;
}
m.applyOnTheLeft(0,1,rot1);
j_right->makeJacobi(m,0,1);
*j_left = rot1 * j_right->transpose();
}
template<typename MatrixType, unsigned int Options, bool PossiblyMoreRowsThanCols>
struct ei_svd_precondition_if_more_rows_than_cols
{
typedef JacobiSVD<MatrixType, Options> SVD;
static bool run(const MatrixType&, typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&) { return false; }
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
enum { ComputeU = SVD::ComputeU, ComputeV = SVD::ComputeV };
static bool run(const MatrixType& matrix, typename SVD::WorkMatrixType& work_matrix, SVD& svd)
{
Index rows = matrix.rows();
Index cols = matrix.cols();
Index diagSize = cols;
if(rows > cols)
{
FullPivHouseholderQR<MatrixType> qr(matrix);
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<Upper>();
if(ComputeU) svd.m_matrixU = qr.matrixQ();
if(ComputeV) svd.m_matrixV = qr.colsPermutation();
return true;
}
else return false;
}
};
template<typename MatrixType, unsigned int Options, bool PossiblyMoreColsThanRows>
struct ei_svd_precondition_if_more_cols_than_rows
{
typedef JacobiSVD<MatrixType, Options> SVD;
static bool run(const MatrixType&, typename SVD::WorkMatrixType&, JacobiSVD<MatrixType, Options>&) { return false; }
};
template<typename MatrixType, unsigned int Options>
struct ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options, true>
{
typedef JacobiSVD<MatrixType, Options> SVD;
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
enum {
ComputeU = SVD::ComputeU,
ComputeV = SVD::ComputeV,
RowsAtCompileTime = SVD::RowsAtCompileTime,
ColsAtCompileTime = SVD::ColsAtCompileTime,
MaxRowsAtCompileTime = SVD::MaxRowsAtCompileTime,
MaxColsAtCompileTime = SVD::MaxColsAtCompileTime,
MatrixOptions = SVD::MatrixOptions
};
static bool run(const MatrixType& matrix, typename SVD::WorkMatrixType& work_matrix, SVD& svd)
{
Index rows = matrix.rows();
Index cols = matrix.cols();
Index diagSize = rows;
if(cols > rows)
{
typedef Matrix<Scalar,ColsAtCompileTime,RowsAtCompileTime,
MatrixOptions,MaxColsAtCompileTime,MaxRowsAtCompileTime>
TransposeTypeWithSameStorageOrder;
FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> qr(matrix.adjoint());
work_matrix = qr.matrixQR().block(0,0,diagSize,diagSize).template triangularView<Upper>().adjoint();
if(ComputeV) svd.m_matrixV = qr.matrixQ();
if(ComputeU) svd.m_matrixU = qr.colsPermutation();
return true;
}
else return false;
}
};
template<typename MatrixType, unsigned int Options>
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const MatrixType& matrix)
{
Index rows = matrix.rows();
Index cols = matrix.cols();
Index diagSize = std::min(rows, cols);
m_singularValues.resize(diagSize);
const RealScalar precision = 2 * NumTraits<Scalar>::epsilon();
if(!ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options>::run(matrix, m_workMatrix, *this)
&& !ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options>::run(matrix, m_workMatrix, *this))
{
m_workMatrix = matrix.block(0,0,diagSize,diagSize);
if(ComputeU) m_matrixU.setIdentity(rows,rows);
if(ComputeV) m_matrixV.setIdentity(cols,cols);
}
bool finished = false;
while(!finished)
{
finished = true;
for(Index p = 1; p < diagSize; ++p)
{
for(Index q = 0; q < p; ++q)
{
if(std::max(ei_abs(m_workMatrix.coeff(p,q)),ei_abs(m_workMatrix.coeff(q,p)))
> std::max(ei_abs(m_workMatrix.coeff(p,p)),ei_abs(m_workMatrix.coeff(q,q)))*precision)
{
finished = false;
ei_svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q);
PlanarRotation<RealScalar> j_left, j_right;
ei_real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);
m_workMatrix.applyOnTheLeft(p,q,j_left);
if(ComputeU) m_matrixU.applyOnTheRight(p,q,j_left.transpose());
m_workMatrix.applyOnTheRight(p,q,j_right);
if(ComputeV) m_matrixV.applyOnTheRight(p,q,j_right);
}
}
}
}
for(Index i = 0; i < diagSize; ++i)
{
RealScalar a = ei_abs(m_workMatrix.coeff(i,i));
m_singularValues.coeffRef(i) = a;
if(ComputeU && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a;
}
for(Index i = 0; i < diagSize; i++)
{
Index pos;
m_singularValues.tail(diagSize-i).maxCoeff(&pos);
if(pos)
{
pos += i;
std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
if(ComputeU) m_matrixU.col(pos).swap(m_matrixU.col(i));
if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
}
}
m_isInitialized = true;
return *this;
}
#endif // EIGEN_JACOBISVD_H
|