aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/QR/Tridiagonalization.h
blob: a85068e38ff3a8ef01af8f3b599610ba034f68c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRIDIAGONALIZATION_H
#define EIGEN_TRIDIAGONALIZATION_H

/** \class Tridiagonalization
  *
  * \brief Trigiagonal decomposition of a selfadjoint matrix
  *
  * \param MatrixType the type of the matrix of which we are computing the eigen decomposition
  *
  * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that:
  * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitatry and \f$ T \f$ a real symmetric tridiagonal matrix
  *
  * \sa MatrixBase::tridiagonalize()
  */
template<typename _MatrixType> class Tridiagonalization
{
  public:

    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;

    enum {SizeMinusOne = MatrixType::RowsAtCompileTime==Dynamic
                        ? Dynamic
                        : MatrixType::RowsAtCompileTime-1};

    typedef Matrix<Scalar, SizeMinusOne, 1> CoeffVectorType;

    typedef typename NestByValue<DiagonalCoeffs<MatrixType> >::RealReturnType DiagonalType;

    typedef typename NestByValue<DiagonalCoeffs<
        NestByValue<Block<
          MatrixType,SizeMinusOne,SizeMinusOne> > > >::RealReturnType SubDiagonalType;

    Tridiagonalization()
    {}

    Tridiagonalization(int rows, int cols)
      : m_matrix(rows,cols), m_hCoeffs(rows-1)
    {}

    Tridiagonalization(const MatrixType& matrix)
      : m_matrix(matrix),
        m_hCoeffs(matrix.cols()-1)
    {
      _compute(m_matrix, m_hCoeffs);
    }

    /** Computes or re-compute the tridiagonalization for the matrix \a matrix.
      *
      * This method allows to re-use the allocated data.
      */
    void compute(const MatrixType& matrix)
    {
      m_matrix = matrix;
      m_hCoeffs.resize(matrix.rows()-1);
      _compute(m_matrix, m_hCoeffs);
    }

    /** \returns the householder coefficients allowing to
      * reconstruct the matrix Q from the packed data.
      *
      * \sa packedMatrix()
      */
    CoeffVectorType householderCoefficients(void) const { return m_hCoeffs; }

    /** \returns the internal result of the decomposition.
      *
      * The returned matrix contains the following information:
      *  - the strict upper part is equal to the input matrix A
      *  - the diagonal and lower sub-diagonal represent the tridiagonal symmetric matrix (real).
      *  - the rest of the lower part contains the Householder vectors that, combined with
      *    Householder coefficients returned by householderCoefficients(),
      *    allows to reconstruct the matrix Q as follow:
      *       Q = H_{N-1} ... H_1 H_0
      *    where the matrices H are the Householder transformation:
      *       H_i = (I - h_i * v_i * v_i')
      *    where h_i == householderCoefficients()[i] and v_i is a Householder vector:
      *       v_i = [ 0, ..., 0, 1, M(i+2,i), ..., M(N-1,i) ]
      *
      * See LAPACK for further details on this packed storage.
      */
    const MatrixType& packedMatrix(void) const { return m_matrix; }

    MatrixType matrixQ(void) const;
    const DiagonalType diagonal(void) const;
    const SubDiagonalType subDiagonal(void) const;

  private:

    static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);

  protected:
    MatrixType m_matrix;
    CoeffVectorType m_hCoeffs;
};


/** \internal
  * Performs a tridiagonal decomposition of \a matA in place.
  *
  * \param matA the input selfadjoint matrix
  * \param hCoeffs returned Householder coefficients
  *
  * The result is written in the lower triangular part of \a matA:
  *
  * \sa packedMatrix()
  */
template<typename MatrixType>
void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
{
  assert(matA.rows()==matA.cols());
  int n = matA.rows();
  for (int i = 0; i<n-2; ++i)
  {
    // let's consider the vector v = i-th column starting at position i+1

    // start of the householder transformation
    // squared norm of the vector v skipping the first element
    RealScalar v1norm2 = matA.col(i).end(n-(i+2)).norm2();

    if (ei_isMuchSmallerThan(v1norm2,static_cast<Scalar>(1)))
    {
      hCoeffs.coeffRef(i) = 0.;
    }
    else
    {
      Scalar v0 = matA.col(i).coeff(i+1);
      RealScalar beta = ei_sqrt(ei_abs2(v0)+v1norm2);
      if (ei_real(v0)>=0.)
        beta = -beta;
      matA.col(i).end(n-(i+2)) *= (1./(v0-beta));
      matA.col(i).coeffRef(i+1) = beta;
      Scalar h = (beta - v0) / beta;
      // end of the householder transformation

      // Apply similarity transformation to remaining columns,
      // i.e., A = H' A H where H = I - h v v' and v = matA.col(i).end(n-i-1)

      matA.col(i).coeffRef(i+1) = 1;
      // let's use the end of hCoeffs to store temporary values
      hCoeffs.end(n-i-1) = h * (matA.corner(BottomRight,n-i-1,n-i-1).template extract<Lower|SelfAdjoint>()
                                * matA.col(i).end(n-i-1));


      hCoeffs.end(n-i-1) += (h * (-0.5) * matA.col(i).end(n-i-1).dot(hCoeffs.end(n-i-1)))
                            * matA.col(i).end(n-i-1);

      matA.corner(BottomRight,n-i-1,n-i-1).template part<Lower>() =
        matA.corner(BottomRight,n-i-1,n-i-1) - (
            (matA.col(i).end(n-i-1) * hCoeffs.end(n-i-1).adjoint()).lazy()
          + (hCoeffs.end(n-i-1) * matA.col(i).end(n-i-1).adjoint()).lazy() );
      // FIXME check that the above expression does follow the lazy path (no temporary and
      // only lower products are evaluated)
      // FIXME can we avoid to evaluate twice the diagonal products ?
      // (in a simple way otherwise it's overkill)

      matA.col(i).coeffRef(i+1) = beta;

      hCoeffs.coeffRef(i) = h;
    }
  }
  if (NumTraits<Scalar>::IsComplex)
  {
    // householder transformation on the remaining single scalar
    int i = n-2;
    Scalar v0 = matA.col(i).coeff(i+1);
    RealScalar beta = ei_abs(v0);
    if (ei_real(v0)>=0.)
      beta = -beta;
    matA.col(i).coeffRef(i+1) = beta;
    hCoeffs.coeffRef(i) = (beta - v0) / beta;
  }
}

/** reconstructs and returns the matrix Q */
template<typename MatrixType>
typename Tridiagonalization<MatrixType>::MatrixType
Tridiagonalization<MatrixType>::matrixQ(void) const
{
  int n = m_matrix.rows();
  MatrixType matQ = MatrixType::identity(n,n);
  for (int i = n-2; i>=0; i--)
  {
    Scalar tmp = m_matrix.coeff(i+1,i);
    m_matrix.const_cast_derived().coeffRef(i+1,i) = 1;

    matQ.corner(BottomRight,n-i-1,n-i-1) -=
      ((m_hCoeffs[i] * m_matrix.col(i).end(n-i-1)) *
      (m_matrix.col(i).end(n-i-1).adjoint() * matQ.corner(BottomRight,n-i-1,n-i-1)).lazy()).lazy();

    m_matrix.const_cast_derived().coeffRef(i+1,i) = tmp;
  }
  return matQ;
}

/** \returns an expression of the diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::DiagonalType
Tridiagonalization<MatrixType>::diagonal(void) const
{
  return m_matrix.diagonal().nestByValue().real();
}

/** \returns an expression of the sub-diagonal vector */
template<typename MatrixType>
const typename Tridiagonalization<MatrixType>::SubDiagonalType
Tridiagonalization<MatrixType>::subDiagonal(void) const
{
  int n = m_matrix.rows();
  return Block<MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1)
    .nestByValue().diagonal().nestByValue().real();
}

#endif // EIGEN_TRIDIAGONALIZATION_H