aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/QR/QR.h
blob: d6d3d20813908f8294b6895ce5c382f8a26e10f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_HouseholderQR_H
#define EIGEN_HouseholderQR_H

/** \ingroup HouseholderQR_Module
  * \nonstableyet
  *
  * \class HouseholderQR
  *
  * \brief Householder QR decomposition of a matrix
  *
  * \param MatrixType the type of the matrix of which we are computing the QR decomposition
  *
  * This class performs a QR decomposition using Householder transformations. The result is
  * stored in a compact way compatible with LAPACK.
  *
  * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
  *
  * \sa MatrixBase::qr()
  */
template<typename MatrixType> class HouseholderQR
{
  public:

    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef Block<MatrixType, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixRBlockType;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
    typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;

    /** 
    * \brief Default Constructor.
    *
    * The default constructor is useful in cases in which the user intends to
    * perform decompositions via HouseholderQR::compute(const MatrixType&).
    */
    HouseholderQR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}

    HouseholderQR(const MatrixType& matrix)
      : m_qr(matrix.rows(), matrix.cols()),
        m_hCoeffs(matrix.cols()),
        m_isInitialized(false)
    {
      compute(matrix);
    }
        
    /** \returns a read-only expression of the matrix R of the actual the QR decomposition */
    const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
    matrixR(void) const
    {
      ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
      int cols = m_qr.cols();
      return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
    }

    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
      * *this is the QR decomposition, if any exists.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \param result a pointer to the vector/matrix in which to store the solution, if any exists.
      *          Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
      *          If no solution exists, *result is left with undefined coefficients.
      *
      * \note The case where b is a matrix is not yet implemented. Also, this
      *       code is space inefficient.
      *
      * Example: \include HouseholderQR_solve.cpp
      * Output: \verbinclude HouseholderQR_solve.out
      */
    template<typename OtherDerived, typename ResultType>
    void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;

    MatrixType matrixQ(void) const;

    void compute(const MatrixType& matrix);

  protected:
    MatrixType m_qr;
    VectorType m_hCoeffs;
    bool m_isInitialized;
};

#ifndef EIGEN_HIDE_HEAVY_CODE

template<typename MatrixType>
void HouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{ 
  m_qr = matrix;
  m_hCoeffs.resize(matrix.cols());

  int rows = matrix.rows();
  int cols = matrix.cols();
  RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();

  for (int k = 0; k < cols; ++k)
  {
    int remainingSize = rows-k;

    RealScalar beta;
    Scalar v0 = m_qr.col(k).coeff(k);

    if (remainingSize==1)
    {
      if (NumTraits<Scalar>::IsComplex)
      {
        // Householder transformation on the remaining single scalar
        beta = ei_abs(v0);
        if (ei_real(v0)>0)
          beta = -beta;
        m_qr.coeffRef(k,k) = beta;
        m_hCoeffs.coeffRef(k) = (beta - v0) / beta;
      }
      else
      {
        m_hCoeffs.coeffRef(k) = 0;
      }
    }
    else if ((beta=m_qr.col(k).end(remainingSize-1).squaredNorm())>eps2)
    // FIXME what about ei_imag(v0) ??
    {
      // form k-th Householder vector
      beta = ei_sqrt(ei_abs2(v0)+beta);
      if (ei_real(v0)>=0.)
        beta = -beta;
      m_qr.col(k).end(remainingSize-1) /= v0-beta;
      m_qr.coeffRef(k,k) = beta;
      Scalar h = m_hCoeffs.coeffRef(k) = (beta - v0) / beta;

      // apply the Householder transformation (I - h v v') to remaining columns, i.e.,
      // R <- (I - h v v') * R   where v = [1,m_qr(k+1,k), m_qr(k+2,k), ...]
      int remainingCols = cols - k -1;
      if (remainingCols>0)
      {
        m_qr.coeffRef(k,k) = Scalar(1);
        m_qr.corner(BottomRight, remainingSize, remainingCols) -= ei_conj(h) * m_qr.col(k).end(remainingSize)
            * (m_qr.col(k).end(remainingSize).adjoint() * m_qr.corner(BottomRight, remainingSize, remainingCols));
        m_qr.coeffRef(k,k) = beta;
      }
    }
    else
    {
      m_hCoeffs.coeffRef(k) = 0;
    }
  }
  m_isInitialized = true;
}

template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
void HouseholderQR<MatrixType>::solve(
  const MatrixBase<OtherDerived>& b,
  ResultType *result
) const
{
  ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
  const int rows = m_qr.rows();
  ei_assert(b.rows() == rows);
  result->resize(rows, b.cols());
  
  // TODO(keir): There is almost certainly a faster way to multiply by
  // Q^T without explicitly forming matrixQ(). Investigate.
  *result = matrixQ().transpose()*b;
  
  const int rank = std::min(result->rows(), result->cols());
  m_qr.corner(TopLeft, rank, rank)
      .template marked<UpperTriangular>()
      .solveTriangularInPlace(result->corner(TopLeft, rank, result->cols()));
}

/** \returns the matrix Q */
template<typename MatrixType>
MatrixType HouseholderQR<MatrixType>::matrixQ() const
{
  ei_assert(m_isInitialized && "HouseholderQR is not initialized.");
  // compute the product Q_0 Q_1 ... Q_n-1,
  // where Q_k is the k-th Householder transformation I - h_k v_k v_k'
  // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
  int rows = m_qr.rows();
  int cols = m_qr.cols();
  MatrixType res = MatrixType::Identity(rows, cols);
  for (int k = cols-1; k >= 0; k--)
  {
    // to make easier the computation of the transformation, let's temporarily
    // overwrite m_qr(k,k) such that the end of m_qr.col(k) is exactly our Householder vector.
    Scalar beta = m_qr.coeff(k,k);
    m_qr.const_cast_derived().coeffRef(k,k) = 1;
    int endLength = rows-k;
    res.corner(BottomRight,endLength, cols-k) -= ((m_hCoeffs.coeff(k) * m_qr.col(k).end(endLength))
      * (m_qr.col(k).end(endLength).adjoint() * res.corner(BottomRight,endLength, cols-k)).lazy()).lazy();
    m_qr.const_cast_derived().coeffRef(k,k) = beta;
  }
  return res;
}

#endif // EIGEN_HIDE_HEAVY_CODE

/** \return the Householder QR decomposition of \c *this.
  *
  * \sa class HouseholderQR
  */
template<typename Derived>
const HouseholderQR<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::householderQr() const
{
  return HouseholderQR<PlainMatrixType>(eval());
}


#endif // EIGEN_HouseholderQR_H