aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/QR/HouseholderQR.h
blob: 03bc8e6cd88245cc107cc1a96e5c1cb2a47fd139 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Vincent Lejeune
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_QR_H
#define EIGEN_QR_H

namespace Eigen { 

/** \ingroup QR_Module
  *
  *
  * \class HouseholderQR
  *
  * \brief Householder QR decomposition of a matrix
  *
  * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
  *
  * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
  * such that 
  * \f[
  *  \mathbf{A} = \mathbf{Q} \, \mathbf{R}
  * \f]
  * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
  * The result is stored in a compact way compatible with LAPACK.
  *
  * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
  * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
  *
  * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
  * FullPivHouseholderQR or ColPivHouseholderQR.
  *
  * \sa MatrixBase::householderQr()
  */
template<typename _MatrixType> class HouseholderQR
{
  public:

    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    // FIXME should be int
    typedef typename MatrixType::StorageIndex StorageIndex;
    typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
    typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
    typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
    typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;

    /**
      * \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via HouseholderQR::compute(const MatrixType&).
      */
    HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa HouseholderQR()
      */
    HouseholderQR(Index rows, Index cols)
      : m_qr(rows, cols),
        m_hCoeffs((std::min)(rows,cols)),
        m_temp(cols),
        m_isInitialized(false) {}

    /** \brief Constructs a QR factorization from a given matrix
      *
      * This constructor computes the QR factorization of the matrix \a matrix by calling
      * the method compute(). It is a short cut for:
      * 
      * \code
      * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
      * qr.compute(matrix);
      * \endcode
      * 
      * \sa compute()
      */
    template<typename InputType>
    explicit HouseholderQR(const EigenBase<InputType>& matrix)
      : m_qr(matrix.rows(), matrix.cols()),
        m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
        m_temp(matrix.cols()),
        m_isInitialized(false)
    {
      compute(matrix.derived());
    }

    /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
      * *this is the QR decomposition, if any exists.
      *
      * \param b the right-hand-side of the equation to solve.
      *
      * \returns a solution.
      *
      * \note The case where b is a matrix is not yet implemented. Also, this
      *       code is space inefficient.
      *
      * \note_about_checking_solutions
      *
      * \note_about_arbitrary_choice_of_solution
      *
      * Example: \include HouseholderQR_solve.cpp
      * Output: \verbinclude HouseholderQR_solve.out
      */
    template<typename Rhs>
    inline const Solve<HouseholderQR, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
      return Solve<HouseholderQR, Rhs>(*this, b.derived());
    }

    /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
      *
      * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
      * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
      *
      * Example: \include HouseholderQR_householderQ.cpp
      * Output: \verbinclude HouseholderQR_householderQ.out
      */
    HouseholderSequenceType householderQ() const
    {
      eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
      return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
    }

    /** \returns a reference to the matrix where the Householder QR decomposition is stored
      * in a LAPACK-compatible way.
      */
    const MatrixType& matrixQR() const
    {
        eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
        return m_qr;
    }

    template<typename InputType>
    HouseholderQR& compute(const EigenBase<InputType>& matrix);

    /** \returns the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      * One way to work around that is to use logAbsDeterminant() instead.
      *
      * \sa logAbsDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar absDeterminant() const;

    /** \returns the natural log of the absolute value of the determinant of the matrix of which
      * *this is the QR decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the QR decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \note This method is useful to work around the risk of overflow/underflow that's inherent
      * to determinant computation.
      *
      * \sa absDeterminant(), MatrixBase::determinant()
      */
    typename MatrixType::RealScalar logAbsDeterminant() const;

    inline Index rows() const { return m_qr.rows(); }
    inline Index cols() const { return m_qr.cols(); }
    
    /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
      * 
      * For advanced uses only.
      */
    const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
    
    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename RhsType, typename DstType>
    EIGEN_DEVICE_FUNC
    void _solve_impl(const RhsType &rhs, DstType &dst) const;
    #endif

  protected:
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }
    
    MatrixType m_qr;
    HCoeffsType m_hCoeffs;
    RowVectorType m_temp;
    bool m_isInitialized;
};

template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
{
  using std::abs;
  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return abs(m_qr.diagonal().prod());
}

template<typename MatrixType>
typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
{
  eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
  eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
  return m_qr.diagonal().cwiseAbs().array().log().sum();
}

namespace internal {

/** \internal */
template<typename MatrixQR, typename HCoeffs>
void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
{
  typedef typename MatrixQR::Scalar Scalar;
  typedef typename MatrixQR::RealScalar RealScalar;
  Index rows = mat.rows();
  Index cols = mat.cols();
  Index size = (std::min)(rows,cols);

  eigen_assert(hCoeffs.size() == size);

  typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
  TempType tempVector;
  if(tempData==0)
  {
    tempVector.resize(cols);
    tempData = tempVector.data();
  }

  for(Index k = 0; k < size; ++k)
  {
    Index remainingRows = rows - k;
    Index remainingCols = cols - k - 1;

    RealScalar beta;
    mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
    mat.coeffRef(k,k) = beta;

    // apply H to remaining part of m_qr from the left
    mat.bottomRightCorner(remainingRows, remainingCols)
        .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
  }
}

/** \internal */
template<typename MatrixQR, typename HCoeffs,
  typename MatrixQRScalar = typename MatrixQR::Scalar,
  bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
struct householder_qr_inplace_blocked
{
  // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
  static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32,
      typename MatrixQR::Scalar* tempData = 0)
  {
    typedef typename MatrixQR::Scalar Scalar;
    typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;

    Index rows = mat.rows();
    Index cols = mat.cols();
    Index size = (std::min)(rows, cols);

    typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
    TempType tempVector;
    if(tempData==0)
    {
      tempVector.resize(cols);
      tempData = tempVector.data();
    }

    Index blockSize = (std::min)(maxBlockSize,size);

    Index k = 0;
    for (k = 0; k < size; k += blockSize)
    {
      Index bs = (std::min)(size-k,blockSize);  // actual size of the block
      Index tcols = cols - k - bs;              // trailing columns
      Index brows = rows-k;                     // rows of the block

      // partition the matrix:
      //        A00 | A01 | A02
      // mat  = A10 | A11 | A12
      //        A20 | A21 | A22
      // and performs the qr dec of [A11^T A12^T]^T
      // and update [A21^T A22^T]^T using level 3 operations.
      // Finally, the algorithm continue on A22

      BlockType A11_21 = mat.block(k,k,brows,bs);
      Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);

      householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);

      if(tcols)
      {
        BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
        apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
      }
    }
  }
};

} // end namespace internal

#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename RhsType, typename DstType>
void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{
  const Index rank = (std::min)(rows(), cols());
  eigen_assert(rhs.rows() == rows());

  typename RhsType::PlainObject c(rhs);

  // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
  c.applyOnTheLeft(householderSequence(
    m_qr.leftCols(rank),
    m_hCoeffs.head(rank)).transpose()
  );

  m_qr.topLeftCorner(rank, rank)
      .template triangularView<Upper>()
      .solveInPlace(c.topRows(rank));

  dst.topRows(rank) = c.topRows(rank);
  dst.bottomRows(cols()-rank).setZero();
}
#endif

/** Performs the QR factorization of the given matrix \a matrix. The result of
  * the factorization is stored into \c *this, and a reference to \c *this
  * is returned.
  *
  * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
  */
template<typename MatrixType>
template<typename InputType>
HouseholderQR<MatrixType>& HouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
{
  check_template_parameters();
  
  Index rows = matrix.rows();
  Index cols = matrix.cols();
  Index size = (std::min)(rows,cols);

  m_qr = matrix.derived();
  m_hCoeffs.resize(size);

  m_temp.resize(cols);

  internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());

  m_isInitialized = true;
  return *this;
}

#ifndef __CUDACC__
/** \return the Householder QR decomposition of \c *this.
  *
  * \sa class HouseholderQR
  */
template<typename Derived>
const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::householderQr() const
{
  return HouseholderQR<PlainObject>(eval());
}
#endif // __CUDACC__

} // end namespace Eigen

#endif // EIGEN_QR_H