aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/QR/EigenSolver.h
blob: 70f21cebcdbf3c4a0689c89dd462062a538a0304 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_EIGENSOLVER_H
#define EIGEN_EIGENSOLVER_H

/** \ingroup QR_Module
  * \nonstableyet
  *
  * \class EigenSolver
  *
  * \brief Eigen values/vectors solver for non selfadjoint matrices
  *
  * \param MatrixType the type of the matrix of which we are computing the eigen decomposition
  *
  * Currently it only support real matrices.
  *
  * \note this code was adapted from JAMA (public domain)
  *
  * \sa MatrixBase::eigenvalues(), SelfAdjointEigenSolver
  */
template<typename _MatrixType> class EigenSolver
{
  public:

    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef std::complex<RealScalar> Complex;
    typedef Matrix<Complex, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
    typedef Matrix<Complex, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> EigenvectorType;
    typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
    typedef Matrix<RealScalar, Dynamic, 1> RealVectorTypeX;

    /** 
    * \brief Default Constructor.
    *
    * The default constructor is useful in cases in which the user intends to
    * perform decompositions via EigenSolver::compute(const MatrixType&).
    */
    EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false) {}

    EigenSolver(const MatrixType& matrix)
      : m_eivec(matrix.rows(), matrix.cols()),
        m_eivalues(matrix.cols()),
        m_isInitialized(false)
    {
      compute(matrix);
    }


    EigenvectorType eigenvectors(void) const;

    /** \returns a real matrix V of pseudo eigenvectors.
      *
      * Let D be the block diagonal matrix with the real eigenvalues in 1x1 blocks,
      * and any complex values u+iv in 2x2 blocks [u v ; -v u]. Then, the matrices D
      * and V satisfy A*V = V*D.
      *
      * More precisely, if the diagonal matrix of the eigen values is:\n
      * \f$
      * \left[ \begin{array}{cccccc}
      * u+iv &      &      &      &   &   \\
      *      & u-iv &      &      &   &   \\
      *      &      & a+ib &      &   &   \\
      *      &      &      & a-ib &   &   \\
      *      &      &      &      & x &   \\
      *      &      &      &      &   & y \\
      * \end{array} \right]
      * \f$ \n
      * then, we have:\n
      * \f$
      * D =\left[ \begin{array}{cccccc}
      *  u & v &    &   &   &   \\
      * -v & u &    &   &   &   \\
      *    &   &  a & b &   &   \\
      *    &   & -b & a &   &   \\
      *    &   &    &   & x &   \\
      *    &   &    &   &   & y \\
      * \end{array} \right]
      * \f$
      *
      * \sa pseudoEigenvalueMatrix()
      */
    const MatrixType& pseudoEigenvectors() const 
    { 
      ei_assert(m_isInitialized && "EigenSolver is not initialized.");
      return m_eivec; 
    }

    MatrixType pseudoEigenvalueMatrix() const;

    /** \returns the eigenvalues as a column vector */
    EigenvalueType eigenvalues() const 
    { 
      ei_assert(m_isInitialized && "EigenSolver is not initialized.");
      return m_eivalues; 
    }

    void compute(const MatrixType& matrix);

  private:

    void orthes(MatrixType& matH, RealVectorType& ort);
    void hqr2(MatrixType& matH);

  protected:
    MatrixType m_eivec;
    EigenvalueType m_eivalues;
    bool m_isInitialized;
};

/** \returns the real block diagonal matrix D of the eigenvalues.
  *
  * See pseudoEigenvectors() for the details.
  */
template<typename MatrixType>
MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
{
  ei_assert(m_isInitialized && "EigenSolver is not initialized.");
  int n = m_eivec.cols();
  MatrixType matD = MatrixType::Zero(n,n);
  for (int i=0; i<n; ++i)
  {
    if (ei_isMuchSmallerThan(ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i))))
      matD.coeffRef(i,i) = ei_real(m_eivalues.coeff(i));
    else
    {
      matD.template block<2,2>(i,i) <<  ei_real(m_eivalues.coeff(i)), ei_imag(m_eivalues.coeff(i)),
                                       -ei_imag(m_eivalues.coeff(i)), ei_real(m_eivalues.coeff(i));
      ++i;
    }
  }
  return matD;
}

/** \returns the normalized complex eigenvectors as a matrix of column vectors.
  *
  * \sa eigenvalues(), pseudoEigenvectors()
  */
template<typename MatrixType>
typename EigenSolver<MatrixType>::EigenvectorType EigenSolver<MatrixType>::eigenvectors(void) const
{
  ei_assert(m_isInitialized && "EigenSolver is not initialized.");
  int n = m_eivec.cols();
  EigenvectorType matV(n,n);
  for (int j=0; j<n; ++j)
  {
    if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j)))))
    {
      // we have a real eigen value
      matV.col(j) = m_eivec.col(j).template cast<Complex>();
    }
    else
    {
      // we have a pair of complex eigen values
      for (int i=0; i<n; ++i)
      {
        matV.coeffRef(i,j)   = Complex(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1));
        matV.coeffRef(i,j+1) = Complex(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
      }
      matV.col(j).normalize();
      matV.col(j+1).normalize();
      ++j;
    }
  }
  return matV;
}

template<typename MatrixType>
void EigenSolver<MatrixType>::compute(const MatrixType& matrix)
{
  assert(matrix.cols() == matrix.rows());
  int n = matrix.cols();
  m_eivalues.resize(n,1);

  MatrixType matH = matrix;
  RealVectorType ort(n);

  // Reduce to Hessenberg form.
  orthes(matH, ort);

  // Reduce Hessenberg to real Schur form.
  hqr2(matH);

  m_isInitialized = true;
}

// Nonsymmetric reduction to Hessenberg form.
template<typename MatrixType>
void EigenSolver<MatrixType>::orthes(MatrixType& matH, RealVectorType& ort)
{
  //  This is derived from the Algol procedures orthes and ortran,
  //  by Martin and Wilkinson, Handbook for Auto. Comp.,
  //  Vol.ii-Linear Algebra, and the corresponding
  //  Fortran subroutines in EISPACK.

  int n = m_eivec.cols();
  int low = 0;
  int high = n-1;

  for (int m = low+1; m <= high-1; ++m)
  {
    // Scale column.
    RealScalar scale = matH.block(m, m-1, high-m+1, 1).cwise().abs().sum();
    if (scale != 0.0)
    {
      // Compute Householder transformation.
      RealScalar h = 0.0;
      // FIXME could be rewritten, but this one looks better wrt cache
      for (int i = high; i >= m; i--)
      {
        ort.coeffRef(i) = matH.coeff(i,m-1)/scale;
        h += ort.coeff(i) * ort.coeff(i);
      }
      RealScalar g = ei_sqrt(h);
      if (ort.coeff(m) > 0)
        g = -g;
      h = h - ort.coeff(m) * g;
      ort.coeffRef(m) = ort.coeff(m) - g;

      // Apply Householder similarity transformation
      // H = (I-u*u'/h)*H*(I-u*u')/h)
      int bSize = high-m+1;
      matH.block(m, m, bSize, n-m) -= ((ort.segment(m, bSize)/h)
        * (ort.segment(m, bSize).transpose() *  matH.block(m, m, bSize, n-m)).lazy()).lazy();

      matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.segment(m, bSize)).lazy()
        * (ort.segment(m, bSize)/h).transpose()).lazy();

      ort.coeffRef(m) = scale*ort.coeff(m);
      matH.coeffRef(m,m-1) = scale*g;
    }
  }

  // Accumulate transformations (Algol's ortran).
  m_eivec.setIdentity();

  for (int m = high-1; m >= low+1; m--)
  {
    if (matH.coeff(m,m-1) != 0.0)
    {
      ort.segment(m+1, high-m) = matH.col(m-1).segment(m+1, high-m);

      int bSize = high-m+1;
      m_eivec.block(m, m, bSize, bSize) += ( (ort.segment(m, bSize) /  (matH.coeff(m,m-1) * ort.coeff(m) ) )
        * (ort.segment(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
    }
  }
}

// Complex scalar division.
template<typename Scalar>
std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
{
  Scalar r,d;
  if (ei_abs(yr) > ei_abs(yi))
  {
      r = yi/yr;
      d = yr + r*yi;
      return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
  }
  else
  {
      r = yr/yi;
      d = yi + r*yr;
      return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
  }
}


// Nonsymmetric reduction from Hessenberg to real Schur form.
template<typename MatrixType>
void EigenSolver<MatrixType>::hqr2(MatrixType& matH)
{
  //  This is derived from the Algol procedure hqr2,
  //  by Martin and Wilkinson, Handbook for Auto. Comp.,
  //  Vol.ii-Linear Algebra, and the corresponding
  //  Fortran subroutine in EISPACK.

  // Initialize
  int nn = m_eivec.cols();
  int n = nn-1;
  int low = 0;
  int high = nn-1;
  Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
  Scalar exshift = 0.0;
  Scalar p=0,q=0,r=0,s=0,z=0,t,w,x,y;

  // Store roots isolated by balanc and compute matrix norm
  // FIXME to be efficient the following would requires a triangular reduxion code
  // Scalar norm = matH.upper().cwise().abs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwise().abs().sum();
  Scalar norm = 0.0;
  for (int j = 0; j < nn; ++j)
  {
    // FIXME what's the purpose of the following since the condition is always false
    if ((j < low) || (j > high))
    {
      m_eivalues.coeffRef(j) = Complex(matH.coeff(j,j), 0.0);
    }
    norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwise().abs().sum();
  }

  // Outer loop over eigenvalue index
  int iter = 0;
  while (n >= low)
  {
    // Look for single small sub-diagonal element
    int l = n;
    while (l > low)
    {
      s = ei_abs(matH.coeff(l-1,l-1)) + ei_abs(matH.coeff(l,l));
      if (s == 0.0)
          s = norm;
      if (ei_abs(matH.coeff(l,l-1)) < eps * s)
        break;
      l--;
    }

    // Check for convergence
    // One root found
    if (l == n)
    {
      matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
      m_eivalues.coeffRef(n) = Complex(matH.coeff(n,n), 0.0);
      n--;
      iter = 0;
    }
    else if (l == n-1) // Two roots found
    {
      w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
      p = (matH.coeff(n-1,n-1) - matH.coeff(n,n)) * Scalar(0.5);
      q = p * p + w;
      z = ei_sqrt(ei_abs(q));
      matH.coeffRef(n,n) = matH.coeff(n,n) + exshift;
      matH.coeffRef(n-1,n-1) = matH.coeff(n-1,n-1) + exshift;
      x = matH.coeff(n,n);

      // Scalar pair
      if (q >= 0)
      {
        if (p >= 0)
          z = p + z;
        else
          z = p - z;

        m_eivalues.coeffRef(n-1) = Complex(x + z, 0.0);
        m_eivalues.coeffRef(n) = Complex(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);

        x = matH.coeff(n,n-1);
        s = ei_abs(x) + ei_abs(z);
        p = x / s;
        q = z / s;
        r = ei_sqrt(p * p+q * q);
        p = p / r;
        q = q / r;

        // Row modification
        for (int j = n-1; j < nn; ++j)
        {
          z = matH.coeff(n-1,j);
          matH.coeffRef(n-1,j) = q * z + p * matH.coeff(n,j);
          matH.coeffRef(n,j) = q * matH.coeff(n,j) - p * z;
        }

        // Column modification
        for (int i = 0; i <= n; ++i)
        {
          z = matH.coeff(i,n-1);
          matH.coeffRef(i,n-1) = q * z + p * matH.coeff(i,n);
          matH.coeffRef(i,n) = q * matH.coeff(i,n) - p * z;
        }

        // Accumulate transformations
        for (int i = low; i <= high; ++i)
        {
          z = m_eivec.coeff(i,n-1);
          m_eivec.coeffRef(i,n-1) = q * z + p * m_eivec.coeff(i,n);
          m_eivec.coeffRef(i,n) = q * m_eivec.coeff(i,n) - p * z;
        }
      }
      else // Complex pair
      {
        m_eivalues.coeffRef(n-1) = Complex(x + p, z);
        m_eivalues.coeffRef(n)   = Complex(x + p, -z);
      }
      n = n - 2;
      iter = 0;
    }
    else // No convergence yet
    {
      // Form shift
      x = matH.coeff(n,n);
      y = 0.0;
      w = 0.0;
      if (l < n)
      {
          y = matH.coeff(n-1,n-1);
          w = matH.coeff(n,n-1) * matH.coeff(n-1,n);
      }

      // Wilkinson's original ad hoc shift
      if (iter == 10)
      {
        exshift += x;
        for (int i = low; i <= n; ++i)
          matH.coeffRef(i,i) -= x;
        s = ei_abs(matH.coeff(n,n-1)) + ei_abs(matH.coeff(n-1,n-2));
        x = y = Scalar(0.75) * s;
        w = Scalar(-0.4375) * s * s;
      }

      // MATLAB's new ad hoc shift
      if (iter == 30)
      {
        s = Scalar((y - x) / 2.0);
        s = s * s + w;
        if (s > 0)
        {
          s = ei_sqrt(s);
          if (y < x)
            s = -s;
          s = Scalar(x - w / ((y - x) / 2.0 + s));
          for (int i = low; i <= n; ++i)
            matH.coeffRef(i,i) -= s;
          exshift += s;
          x = y = w = Scalar(0.964);
        }
      }

      iter = iter + 1;   // (Could check iteration count here.)

      // Look for two consecutive small sub-diagonal elements
      int m = n-2;
      while (m >= l)
      {
        z = matH.coeff(m,m);
        r = x - z;
        s = y - z;
        p = (r * s - w) / matH.coeff(m+1,m) + matH.coeff(m,m+1);
        q = matH.coeff(m+1,m+1) - z - r - s;
        r = matH.coeff(m+2,m+1);
        s = ei_abs(p) + ei_abs(q) + ei_abs(r);
        p = p / s;
        q = q / s;
        r = r / s;
        if (m == l) {
          break;
        }
        if (ei_abs(matH.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
          eps * (ei_abs(p) * (ei_abs(matH.coeff(m-1,m-1)) + ei_abs(z) +
          ei_abs(matH.coeff(m+1,m+1)))))
        {
          break;
        }
        m--;
      }

      for (int i = m+2; i <= n; ++i)
      {
        matH.coeffRef(i,i-2) = 0.0;
        if (i > m+2)
          matH.coeffRef(i,i-3) = 0.0;
      }

      // Double QR step involving rows l:n and columns m:n
      for (int k = m; k <= n-1; ++k)
      {
        int notlast = (k != n-1);
        if (k != m) {
          p = matH.coeff(k,k-1);
          q = matH.coeff(k+1,k-1);
          r = notlast ? matH.coeff(k+2,k-1) : Scalar(0);
          x = ei_abs(p) + ei_abs(q) + ei_abs(r);
          if (x != 0.0)
          {
            p = p / x;
            q = q / x;
            r = r / x;
          }
        }

        if (x == 0.0)
          break;

        s = ei_sqrt(p * p + q * q + r * r);

        if (p < 0)
          s = -s;

        if (s != 0)
        {
          if (k != m)
            matH.coeffRef(k,k-1) = -s * x;
          else if (l != m)
            matH.coeffRef(k,k-1) = -matH.coeff(k,k-1);

          p = p + s;
          x = p / s;
          y = q / s;
          z = r / s;
          q = q / p;
          r = r / p;

          // Row modification
          for (int j = k; j < nn; ++j)
          {
            p = matH.coeff(k,j) + q * matH.coeff(k+1,j);
            if (notlast)
            {
              p = p + r * matH.coeff(k+2,j);
              matH.coeffRef(k+2,j) = matH.coeff(k+2,j) - p * z;
            }
            matH.coeffRef(k,j) = matH.coeff(k,j) - p * x;
            matH.coeffRef(k+1,j) = matH.coeff(k+1,j) - p * y;
          }

          // Column modification
          for (int i = 0; i <= std::min(n,k+3); ++i)
          {
            p = x * matH.coeff(i,k) + y * matH.coeff(i,k+1);
            if (notlast)
            {
              p = p + z * matH.coeff(i,k+2);
              matH.coeffRef(i,k+2) = matH.coeff(i,k+2) - p * r;
            }
            matH.coeffRef(i,k) = matH.coeff(i,k) - p;
            matH.coeffRef(i,k+1) = matH.coeff(i,k+1) - p * q;
          }

          // Accumulate transformations
          for (int i = low; i <= high; ++i)
          {
            p = x * m_eivec.coeff(i,k) + y * m_eivec.coeff(i,k+1);
            if (notlast)
            {
              p = p + z * m_eivec.coeff(i,k+2);
              m_eivec.coeffRef(i,k+2) = m_eivec.coeff(i,k+2) - p * r;
            }
            m_eivec.coeffRef(i,k) = m_eivec.coeff(i,k) - p;
            m_eivec.coeffRef(i,k+1) = m_eivec.coeff(i,k+1) - p * q;
          }
        }  // (s != 0)
      }  // k loop
    }  // check convergence
  }  // while (n >= low)

  // Backsubstitute to find vectors of upper triangular form
  if (norm == 0.0)
  {
      return;
  }

  for (n = nn-1; n >= 0; n--)
  {
    p = m_eivalues.coeff(n).real();
    q = m_eivalues.coeff(n).imag();

    // Scalar vector
    if (q == 0)
    {
      int l = n;
      matH.coeffRef(n,n) = 1.0;
      for (int i = n-1; i >= 0; i--)
      {
        w = matH.coeff(i,i) - p;
        r = (matH.row(i).segment(l,n-l+1) * matH.col(n).segment(l, n-l+1))(0,0);

        if (m_eivalues.coeff(i).imag() < 0.0)
        {
          z = w;
          s = r;
        }
        else
        {
          l = i;
          if (m_eivalues.coeff(i).imag() == 0.0)
          {
            if (w != 0.0)
              matH.coeffRef(i,n) = -r / w;
            else
              matH.coeffRef(i,n) = -r / (eps * norm);
          }
          else // Solve real equations
          {
            x = matH.coeff(i,i+1);
            y = matH.coeff(i+1,i);
            q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
            t = (x * s - z * r) / q;
            matH.coeffRef(i,n) = t;
            if (ei_abs(x) > ei_abs(z))
              matH.coeffRef(i+1,n) = (-r - w * t) / x;
            else
              matH.coeffRef(i+1,n) = (-s - y * t) / z;
          }

          // Overflow control
          t = ei_abs(matH.coeff(i,n));
          if ((eps * t) * t > 1)
            matH.col(n).end(nn-i) /= t;
        }
      }
    }
    else if (q < 0) // Complex vector
    {
      std::complex<Scalar> cc;
      int l = n-1;

      // Last vector component imaginary so matrix is triangular
      if (ei_abs(matH.coeff(n,n-1)) > ei_abs(matH.coeff(n-1,n)))
      {
        matH.coeffRef(n-1,n-1) = q / matH.coeff(n,n-1);
        matH.coeffRef(n-1,n) = -(matH.coeff(n,n) - p) / matH.coeff(n,n-1);
      }
      else
      {
        cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
        matH.coeffRef(n-1,n-1) = ei_real(cc);
        matH.coeffRef(n-1,n) = ei_imag(cc);
      }
      matH.coeffRef(n,n-1) = 0.0;
      matH.coeffRef(n,n) = 1.0;
      for (int i = n-2; i >= 0; i--)
      {
        Scalar ra,sa,vr,vi;
        ra = (matH.block(i,l, 1, n-l+1) * matH.block(l,n-1, n-l+1, 1)).lazy()(0,0);
        sa = (matH.block(i,l, 1, n-l+1) * matH.block(l,n, n-l+1, 1)).lazy()(0,0);
        w = matH.coeff(i,i) - p;

        if (m_eivalues.coeff(i).imag() < 0.0)
        {
          z = w;
          r = ra;
          s = sa;
        }
        else
        {
          l = i;
          if (m_eivalues.coeff(i).imag() == 0)
          {
            cc = cdiv(-ra,-sa,w,q);
            matH.coeffRef(i,n-1) = ei_real(cc);
            matH.coeffRef(i,n) = ei_imag(cc);
          }
          else
          {
            // Solve complex equations
            x = matH.coeff(i,i+1);
            y = matH.coeff(i+1,i);
            vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
            vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
            if ((vr == 0.0) && (vi == 0.0))
              vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));

            cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
            matH.coeffRef(i,n-1) = ei_real(cc);
            matH.coeffRef(i,n) = ei_imag(cc);
            if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
            {
              matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x;
              matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x;
            }
            else
            {
              cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q);
              matH.coeffRef(i+1,n-1) = ei_real(cc);
              matH.coeffRef(i+1,n) = ei_imag(cc);
            }
          }

          // Overflow control
          t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
          if ((eps * t) * t > 1)
            matH.block(i, n-1, nn-i, 2) /= t;

        }
      }
    }
  }

  // Vectors of isolated roots
  for (int i = 0; i < nn; ++i)
  {
    // FIXME again what's the purpose of this test ?
    // in this algo low==0 and high==nn-1 !!
    if (i < low || i > high)
    {
      m_eivec.row(i).end(nn-i) = matH.row(i).end(nn-i);
    }
  }

  // Back transformation to get eigenvectors of original matrix
  int bRows = high-low+1;
  for (int j = nn-1; j >= low; j--)
  {
    int bSize = std::min(j,high)-low+1;
    m_eivec.col(j).segment(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).segment(low, bSize));
  }
}

#endif // EIGEN_EIGENSOLVER_H