aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/QR/CompleteOrthogonalDecomposition.h
blob: 880becb2523092de1a0a1566bb41a7da9be263f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H

namespace Eigen {

namespace internal {
template <typename _MatrixType>
struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
    : traits<_MatrixType> {
  enum { Flags = 0 };
};

}  // end namespace internal

/** \ingroup QR_Module
  *
  * \class CompleteOrthogonalDecomposition
  *
  * \brief Complete orthogonal decomposition (COD) of a matrix.
  *
  * \param MatrixType the type of the matrix of which we are computing the COD.
  *
  * This class performs a rank-revealing complete orthogonal decomposition of a
  * matrix  \b A into matrices \b P, \b Q, \b T, and \b Z such that
  * \f[
  *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \,
  *                     \begin{bmatrix} \mathbf{T} &  \mathbf{0} \\
  *                                     \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z}
  * \f]
  * by using Householder transformations. Here, \b P is a permutation matrix,
  * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
  * size rank-by-rank. \b A may be rank deficient.
  *
  * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
  * 
  * \sa MatrixBase::completeOrthogonalDecomposition()
  */
template <typename _MatrixType>
class CompleteOrthogonalDecomposition {
 public:
  typedef _MatrixType MatrixType;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
  };
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::StorageIndex StorageIndex;
  typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
  typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
      PermutationType;
  typedef typename internal::plain_row_type<MatrixType, Index>::type
      IntRowVectorType;
  typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
  typedef typename internal::plain_row_type<MatrixType, RealScalar>::type
      RealRowVectorType;
  typedef HouseholderSequence<
      MatrixType, typename internal::remove_all<
                      typename HCoeffsType::ConjugateReturnType>::type>
      HouseholderSequenceType;
  typedef typename MatrixType::PlainObject PlainObject;

 private:
  typedef typename PermutationType::Index PermIndexType;

 public:
  /**
   * \brief Default Constructor.
   *
   * The default constructor is useful in cases in which the user intends to
   * perform decompositions via
   * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&).
   */
  CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {}

  /** \brief Default Constructor with memory preallocation
   *
   * Like the default constructor but with preallocation of the internal data
   * according to the specified problem \a size.
   * \sa CompleteOrthogonalDecomposition()
   */
  CompleteOrthogonalDecomposition(Index rows, Index cols)
      : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {}

  /** \brief Constructs a complete orthogonal decomposition from a given
   * matrix.
   *
   * This constructor computes the complete orthogonal decomposition of the
   * matrix \a matrix by calling the method compute(). The default
   * threshold for rank determination will be used. It is a short cut for:
   *
   * \code
   * CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(),
   *                                                 matrix.cols());
   * cod.setThreshold(Default);
   * cod.compute(matrix);
   * \endcode
   *
   * \sa compute()
   */
  template <typename InputType>
  explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
      : m_cpqr(matrix.rows(), matrix.cols()),
        m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
        m_temp(matrix.cols())
  {
    compute(matrix.derived());
  }

  /** \brief Constructs a complete orthogonal decomposition from a given matrix
    *
    * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
    *
    * \sa CompleteOrthogonalDecomposition(const EigenBase&)
    */
  template<typename InputType>
  explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix)
    : m_cpqr(matrix.derived()),
      m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
      m_temp(matrix.cols())
  {
    computeInPlace();
  }


  /** This method computes the minimum-norm solution X to a least squares
   * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of
   * which \c *this is the complete orthogonal decomposition.
   *
   * \param b the right-hand sides of the problem to solve.
   *
   * \returns a solution.
   *
   */
  template <typename Rhs>
  inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve(
      const MatrixBase<Rhs>& b) const {
    eigen_assert(m_cpqr.m_isInitialized &&
                 "CompleteOrthogonalDecomposition is not initialized.");
    return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived());
  }

  HouseholderSequenceType householderQ(void) const;
  HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); }

  /** \returns the matrix \b Z.
   */
  MatrixType matrixZ() const {
    MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols());
    applyZAdjointOnTheLeftInPlace(Z);
    return Z.adjoint();
  }

  /** \returns a reference to the matrix where the complete orthogonal
   * decomposition is stored
   */
  const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); }

  /** \returns a reference to the matrix where the complete orthogonal
   * decomposition is stored.
   * \warning The strict lower part and \code cols() - rank() \endcode right
   * columns of this matrix contains internal values.
   * Only the upper triangular part should be referenced. To get it, use
   * \code matrixT().template triangularView<Upper>() \endcode
   * For rank-deficient matrices, use
   * \code
   * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
   * \endcode
   */
  const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }

  template <typename InputType>
  CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) {
    // Compute the column pivoted QR factorization A P = Q R.
    m_cpqr.compute(matrix);
    computeInPlace();
    return *this;
  }

  /** \returns a const reference to the column permutation matrix */
  const PermutationType& colsPermutation() const {
    return m_cpqr.colsPermutation();
  }

  /** \returns the absolute value of the determinant of the matrix of which
   * *this is the complete orthogonal decomposition. It has only linear
   * complexity (that is, O(n) where n is the dimension of the square matrix)
   * as the complete orthogonal decomposition has already been computed.
   *
   * \note This is only for square matrices.
   *
   * \warning a determinant can be very big or small, so for matrices
   * of large enough dimension, there is a risk of overflow/underflow.
   * One way to work around that is to use logAbsDeterminant() instead.
   *
   * \sa logAbsDeterminant(), MatrixBase::determinant()
   */
  typename MatrixType::RealScalar absDeterminant() const;

  /** \returns the natural log of the absolute value of the determinant of the
   * matrix of which *this is the complete orthogonal decomposition. It has
   * only linear complexity (that is, O(n) where n is the dimension of the
   * square matrix) as the complete orthogonal decomposition has already been
   * computed.
   *
   * \note This is only for square matrices.
   *
   * \note This method is useful to work around the risk of overflow/underflow
   * that's inherent to determinant computation.
   *
   * \sa absDeterminant(), MatrixBase::determinant()
   */
  typename MatrixType::RealScalar logAbsDeterminant() const;

  /** \returns the rank of the matrix of which *this is the complete orthogonal
   * decomposition.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline Index rank() const { return m_cpqr.rank(); }

  /** \returns the dimension of the kernel of the matrix of which *this is the
   * complete orthogonal decomposition.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); }

  /** \returns true if the matrix of which *this is the decomposition represents
   * an injective linear map, i.e. has trivial kernel; false otherwise.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline bool isInjective() const { return m_cpqr.isInjective(); }

  /** \returns true if the matrix of which *this is the decomposition represents
   * a surjective linear map; false otherwise.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline bool isSurjective() const { return m_cpqr.isSurjective(); }

  /** \returns true if the matrix of which *this is the complete orthogonal
   * decomposition is invertible.
   *
   * \note This method has to determine which pivots should be considered
   * nonzero. For that, it uses the threshold value that you can control by
   * calling setThreshold(const RealScalar&).
   */
  inline bool isInvertible() const { return m_cpqr.isInvertible(); }

  /** \returns the pseudo-inverse of the matrix of which *this is the complete
   * orthogonal decomposition.
   * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems.
   * It is more efficient and numerically stable to call \c this->solve(rhs).
   */
  inline const Inverse<CompleteOrthogonalDecomposition> pseudoInverse() const
  {
    return Inverse<CompleteOrthogonalDecomposition>(*this);
  }

  inline Index rows() const { return m_cpqr.rows(); }
  inline Index cols() const { return m_cpqr.cols(); }

  /** \returns a const reference to the vector of Householder coefficients used
   * to represent the factor \c Q.
   *
   * For advanced uses only.
   */
  inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); }

  /** \returns a const reference to the vector of Householder coefficients
   * used to represent the factor \c Z.
   *
   * For advanced uses only.
   */
  const HCoeffsType& zCoeffs() const { return m_zCoeffs; }

  /** Allows to prescribe a threshold to be used by certain methods, such as
   * rank(), who need to determine when pivots are to be considered nonzero.
   * Most be called before calling compute().
   *
   * When it needs to get the threshold value, Eigen calls threshold(). By
   * default, this uses a formula to automatically determine a reasonable
   * threshold. Once you have called the present method
   * setThreshold(const RealScalar&), your value is used instead.
   *
   * \param threshold The new value to use as the threshold.
   *
   * A pivot will be considered nonzero if its absolute value is strictly
   * greater than
   *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
   * where maxpivot is the biggest pivot.
   *
   * If you want to come back to the default behavior, call
   * setThreshold(Default_t)
   */
  CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) {
    m_cpqr.setThreshold(threshold);
    return *this;
  }

  /** Allows to come back to the default behavior, letting Eigen use its default
   * formula for determining the threshold.
   *
   * You should pass the special object Eigen::Default as parameter here.
   * \code qr.setThreshold(Eigen::Default); \endcode
   *
   * See the documentation of setThreshold(const RealScalar&).
   */
  CompleteOrthogonalDecomposition& setThreshold(Default_t) {
    m_cpqr.setThreshold(Default);
    return *this;
  }

  /** Returns the threshold that will be used by certain methods such as rank().
   *
   * See the documentation of setThreshold(const RealScalar&).
   */
  RealScalar threshold() const { return m_cpqr.threshold(); }

  /** \returns the number of nonzero pivots in the complete orthogonal
   * decomposition. Here nonzero is meant in the exact sense, not in a
   * fuzzy sense. So that notion isn't really intrinsically interesting,
   * but it is still useful when implementing algorithms.
   *
   * \sa rank()
   */
  inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); }

  /** \returns the absolute value of the biggest pivot, i.e. the biggest
   *          diagonal coefficient of R.
   */
  inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); }

  /** \brief Reports whether the complete orthogonal decomposition was
   * successful.
   *
   * \note This function always returns \c Success. It is provided for
   * compatibility
   * with other factorization routines.
   * \returns \c Success
   */
  ComputationInfo info() const {
    eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized.");
    return Success;
  }

#ifndef EIGEN_PARSED_BY_DOXYGEN
  template <typename RhsType, typename DstType>
  void _solve_impl(const RhsType& rhs, DstType& dst) const;
#endif

 protected:
  static void check_template_parameters() {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
  }

  void computeInPlace();

  /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
   */
  template <typename Rhs>
  void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const;

  ColPivHouseholderQR<MatrixType> m_cpqr;
  HCoeffsType m_zCoeffs;
  RowVectorType m_temp;
};

template <typename MatrixType>
typename MatrixType::RealScalar
CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const {
  return m_cpqr.absDeterminant();
}

template <typename MatrixType>
typename MatrixType::RealScalar
CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
  return m_cpqr.logAbsDeterminant();
}

/** Performs the complete orthogonal decomposition of the given matrix \a
 * matrix. The result of the factorization is stored into \c *this, and a
 * reference to \c *this is returned.
 *
 * \sa class CompleteOrthogonalDecomposition,
 * CompleteOrthogonalDecomposition(const MatrixType&)
 */
template <typename MatrixType>
void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace()
{
  check_template_parameters();

  // the column permutation is stored as int indices, so just to be sure:
  eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest());

  const Index rank = m_cpqr.rank();
  const Index cols = m_cpqr.cols();
  const Index rows = m_cpqr.rows();
  m_zCoeffs.resize((std::min)(rows, cols));
  m_temp.resize(cols);

  if (rank < cols) {
    // We have reduced the (permuted) matrix to the form
    //   [R11 R12]
    //   [ 0  R22]
    // where R11 is r-by-r (r = rank) upper triangular, R12 is
    // r-by-(n-r), and R22 is empty or the norm of R22 is negligible.
    // We now compute the complete orthogonal decomposition by applying
    // Householder transformations from the right to the upper trapezoidal
    // matrix X = [R11 R12] to zero out R12 and obtain the factorization
    // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and
    // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix.
    // We store the data representing Z in R12 and m_zCoeffs.
    for (Index k = rank - 1; k >= 0; --k) {
      if (k != rank - 1) {
        // Given the API for Householder reflectors, it is more convenient if
        // we swap the leading parts of columns k and r-1 (zero-based) to form
        // the matrix X_k = [X(0:k, k), X(0:k, r:n)]
        m_cpqr.m_qr.col(k).head(k + 1).swap(
            m_cpqr.m_qr.col(rank - 1).head(k + 1));
      }
      // Construct Householder reflector Z(k) to zero out the last row of X_k,
      // i.e. choose Z(k) such that
      // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0].
      RealScalar beta;
      m_cpqr.m_qr.row(k)
          .tail(cols - rank + 1)
          .makeHouseholderInPlace(m_zCoeffs(k), beta);
      m_cpqr.m_qr(k, rank - 1) = beta;
      if (k > 0) {
        // Apply Z(k) to the first k rows of X_k
        m_cpqr.m_qr.topRightCorner(k, cols - rank + 1)
            .applyHouseholderOnTheRight(
                m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k),
                &m_temp(0));
      }
      if (k != rank - 1) {
        // Swap X(0:k,k) back to its proper location.
        m_cpqr.m_qr.col(k).head(k + 1).swap(
            m_cpqr.m_qr.col(rank - 1).head(k + 1));
      }
    }
  }
}

template <typename MatrixType>
template <typename Rhs>
void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
    Rhs& rhs) const {
  const Index cols = this->cols();
  const Index nrhs = rhs.cols();
  const Index rank = this->rank();
  Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
  for (Index k = 0; k < rank; ++k) {
    if (k != rank - 1) {
      rhs.row(k).swap(rhs.row(rank - 1));
    }
    rhs.middleRows(rank - 1, cols - rank + 1)
        .applyHouseholderOnTheLeft(
            matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k),
            &temp(0));
    if (k != rank - 1) {
      rhs.row(k).swap(rhs.row(rank - 1));
    }
  }
}

#ifndef EIGEN_PARSED_BY_DOXYGEN
template <typename _MatrixType>
template <typename RhsType, typename DstType>
void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
    const RhsType& rhs, DstType& dst) const {
  eigen_assert(rhs.rows() == this->rows());

  const Index rank = this->rank();
  if (rank == 0) {
    dst.setZero();
    return;
  }

  // Compute c = Q^* * rhs
  // Note that the matrix Q = H_0^* H_1^*... so its inverse is
  // Q^* = (H_0 H_1 ...)^T
  typename RhsType::PlainObject c(rhs);
  c.applyOnTheLeft(
      householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose());

  // Solve T z = c(1:rank, :)
  dst.topRows(rank) = matrixT()
                          .topLeftCorner(rank, rank)
                          .template triangularView<Upper>()
                          .solve(c.topRows(rank));

  const Index cols = this->cols();
  if (rank < cols) {
    // Compute y = Z^* * [ z ]
    //                   [ 0 ]
    dst.bottomRows(cols - rank).setZero();
    applyZAdjointOnTheLeftInPlace(dst);
  }

  // Undo permutation to get x = P^{-1} * y.
  dst = colsPermutation() * dst;
}
#endif

namespace internal {

template<typename DstXprType, typename MatrixType>
struct Assignment<DstXprType, Inverse<CompleteOrthogonalDecomposition<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename CompleteOrthogonalDecomposition<MatrixType>::Scalar>, Dense2Dense>
{
  typedef CompleteOrthogonalDecomposition<MatrixType> CodType;
  typedef Inverse<CodType> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename CodType::Scalar> &)
  {
    dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.rows()));
  }
};

} // end namespace internal

/** \returns the matrix Q as a sequence of householder transformations */
template <typename MatrixType>
typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType
CompleteOrthogonalDecomposition<MatrixType>::householderQ() const {
  return m_cpqr.householderQ();
}

/** \return the complete orthogonal decomposition of \c *this.
  *
  * \sa class CompleteOrthogonalDecomposition
  */
template <typename Derived>
const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::completeOrthogonalDecomposition() const {
  return CompleteOrthogonalDecomposition<PlainObject>(eval());
}

}  // end namespace Eigen

#endif  // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H