aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/OrderingMethods/Ordering.h
blob: eedaed14483720555c597b0c5818002c22de272f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
 
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012  Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_ORDERING_H
#define EIGEN_ORDERING_H

#include "Amd.h"
namespace Eigen {
template<class Derived> 
class OrderingBase
{
  public:
    typedef typename internal::traits<Derived>::Scalar Scalar;
    typedef typename internal::traits<Derived>::Index Index;
    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
  
  public:
    OrderingBase():m_isInitialized(false)
    {
      
    }
    template<typename MatrixType>
    OrderingBase(const MatrixType& mat):OrderingBase()
    {
      compute(mat);
    }
    template<typename MatrixType>
    Derived& compute(const MatrixType& mat)
    {
      return derived().compute(mat);
    }
    Derived& derived()
    {
      return *static_cast<Derived*>(this);
    }
    const Derived& derived() const
    {
      return *static_cast<const Derived*>(this);
    }
    /** 
     * Get the permutation vector 
     */
    PermutationType& get_perm()
    {
      if (m_isInitialized == true) return m_P; 
      else abort(); // FIXME Should find a smoother way to exit with error code
    }
    
    /**
    * Get the symmetric pattern A^T+A from the input matrix A. 
    * FIXME: The values should not be considered here
    */
    template<typename MatrixType> 
    void at_plus_a(const MatrixType& mat)
    {
      MatrixType C;
      C = mat.transpose(); // NOTE: Could be  costly
      for (int i = 0; i < C.rows(); i++) 
      {
          for (typename MatrixType::InnerIterator it(C, i); it; ++it)
            it.valueRef() = 0.0;
      }
      m_mat = C + mat; 
    }
    
    /** keeps off-diagonal entries; drops diagonal entries */
    struct keep_diag {
      inline bool operator() (const Index& row, const Index& col, const Scalar&) const
      {
        return row!=col;
      }
    };
    
  protected:
    void init()
    {
      m_isInitialized = false;
    }
    PermutationType m_P; // The computed permutation 
    mutable bool m_isInitialized; 
    SparseMatrix<Scalar,ColMajor,Index> m_mat; // Stores the (symmetrized) matrix to permute
};
/** 
 * Get the approximate minimum degree ordering
 * If the matrix is not structurally symmetric, an ordering of A^T+A is computed
 * \tparam Scalar The type of the scalar of the matrix for which the ordering is applied
 * \tparam  Index The type of indices of the matrix 
 */
template <typename Scalar, typename Index>
class AMDOrdering : public OrderingBase<AMDOrdering<Scalar, Index> >
{
  public:
    typedef OrderingBase< AMDOrdering<Scalar, Index> > Base;
    typedef SparseMatrix<Scalar, ColMajor,Index> MatrixType;  
    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
  public:
    AMDOrdering():Base(){}
    AMDOrdering(const MatrixType& mat):Base()
    {
      compute(mat);
    }
    AMDOrdering(const MatrixType& mat, PermutationType& perm_c):Base()
    {
      compute(mat); 
      perm_c = this.get_perm();
    }
    /** Compute the permutation vector from a column-major sparse matrix */
    void compute(const MatrixType& mat)
    {
      // Compute the symmetric pattern
      at_plus_a(mat); 
    
      // Call the AMD routine 
      m_mat.prune(keep_diag());
      internal::minimum_degree_ordering(m_mat, m_P);
      if (m_P.size()>0) m_isInitialized = true;
    }
    /** Compute the permutation with a self adjoint matrix */
    template <typename SrcType, unsigned int SrcUpLo> 
    void compute(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat)
    {
      m_mat = mat;
      
      // Call the AMD routine 
      m_mat.prune(keep_diag()); //Remove the diagonal elements 
      internal::minimum_degree_ordering(m_mat, m_P);
      if (m_P.size()>0) m_isInitialized = true;
    }
  protected:
    struct keep_diag{
      inline bool operator() (const Index& row, const Index& col, const Scalar&) const
      {
        return row!=col;
      }
    };
    using Base::m_isInitialized;
    using Base::m_P;
    using Base::m_mat;
};


namespace internal {
 template <typename _Scalar, typename _Index>
  struct traits<AMDOrdering<_Scalar, _Index> >
  {
    typedef _Scalar Scalar;
    typedef _Index Index; 
  };
}

/** 
 * Get the column approximate minimum degree ordering 
 * The matrix should be in column-major format
 */
// template<typename Scalar, typename Index>
// class COLAMDOrdering: public OrderingBase< ColamdOrdering<Scalar, Index> >
// {
//   public:
//     typedef OrderingBase< ColamdOrdering<Scalar, Index> > Base;
//     typedef SparseMatrix<Scalar,ColMajor,Index> MatrixType;  
//     
//   public:
//     COLAMDOrdering():Base() {}
//     
//     COLAMDOrdering(const MatrixType& matrix):Base()
//     {
//       compute(matrix);
//     }
//     COLAMDOrdering(const MatrixType& mat, PermutationType& perm_c):Base()
//     {
//       compute(matrix); 
//       perm_c = this.get_perm();
//     }
//     void compute(const MatrixType& mat)
//     {
//       // Test if the matrix is column major...
//           
//       int m = mat.rows();
//       int n = mat.cols();
//       int nnz = mat.nonZeros();
//       // Get the recommended value of Alen to be used by colamd
//       int Alen = colamd_recommended(nnz, m, n); 
//       // Set the default parameters
//       double knobs[COLAMD_KNOBS]; 
//       colamd_set_defaults(knobs);
//       
//       int info;
//       VectorXi p(n), A(nnz); 
//       for(int i=0; i < n; i++) p(i) = mat.outerIndexPtr()(i);
//       for(int i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()(i);
//       // Call Colamd routine to compute the ordering 
//       info = colamd(m, n, Alen, A,p , knobs, stats)
//       eigen_assert( (info != FALSE)&& "COLAMD failed " );
//       
//       m_P.resize(n);
//       for (int i = 0; i < n; i++) m_P(p(i)) = i;
//       m_isInitialized = true;
//     }
//   protected:
//     using Base::m_isInitialized;
//     using Base m_P; 
// };

} // end namespace Eigen
#endif