aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/LU/arch/Inverse_NEON.h
blob: 0547a317c0d8977ac61d8251015260751e0b9d69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// The algorithm below is a re-implementation of \src\LU\Inverse_SSE.h using NEON
// intrinsics. inv(M) = M#/|M|, where inv(M), M# and |M| denote the inverse of M,
// adjugate of M and determinant of M respectively. M# is computed block-wise
// using specific formulae. For proof, see:
// https://lxjk.github.io/2017/09/03/Fast-4x4-Matrix-Inverse-with-SSE-SIMD-Explained.html
// Variable names are adopted from \src\LU\Inverse_SSE.h.

// TODO: Unify implementations of different data types (i.e. float and double) and
// different sets of instrinsics (i.e. SSE and NEON)
#ifndef EIGEN_INVERSE_NEON_H
#define EIGEN_INVERSE_NEON_H

namespace Eigen
{
namespace internal
{
template <typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::NEON, float, MatrixType, ResultType>
{
  enum
  {
    MatrixAlignment = traits<MatrixType>::Alignment,
    ResultAlignment = traits<ResultType>::Alignment,
    StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
  };
  typedef typename conditional<(MatrixType::Flags & LinearAccessBit), MatrixType const &, typename MatrixType::PlainObject>::type ActualMatrixType;

  // fuctionally equivalent to _mm_shuffle_ps in SSE when interleave
  // == false (i.e. shuffle(m, n, mask, false) equals _mm_shuffle_ps(m, n, mask)),
  // interleave m and n when interleave == true
  static Packet4f shuffle(const Packet4f &m, const Packet4f &n, int mask, bool interleave = false)
  {
    const float *a = (const float *)&m;
    const float *b = (const float *)&n;
    if (!interleave)
    {
      Packet4f res = {*(a + (mask & 3)), *(a + ((mask >> 2) & 3)), *(b + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))};
      return res;
    }
    else
    {
      Packet4f res = {*(a + (mask & 3)), *(b + ((mask >> 2) & 3)), *(a + ((mask >> 4) & 3)), *(b + ((mask >> 6) & 3))};
      return res;
    }
  }

  static void run(const MatrixType &mat, ResultType &result)
  {
    ActualMatrixType matrix(mat);

    Packet4f _L1 = matrix.template packet<MatrixAlignment>(0);
    Packet4f _L2 = matrix.template packet<MatrixAlignment>(4);
    Packet4f _L3 = matrix.template packet<MatrixAlignment>(8);
    Packet4f _L4 = matrix.template packet<MatrixAlignment>(12);

    // Four 2x2 sub-matrices of the input matrix
    // input = [[A, B],
    //          [C, D]]
    Packet4f A, B, C, D;

    if (!StorageOrdersMatch)
    {
      A = shuffle(_L1, _L2, 0x50, true);
      B = shuffle(_L3, _L4, 0x50, true);
      C = shuffle(_L1, _L2, 0xFA, true);
      D = shuffle(_L3, _L4, 0xFA, true);
    }
    else
    {
      A = shuffle(_L1, _L2, 0x44);
      B = shuffle(_L1, _L2, 0xEE);
      C = shuffle(_L3, _L4, 0x44);
      D = shuffle(_L3, _L4, 0xEE);
    }

    Packet4f AB, DC, temp;

    // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
    AB = shuffle(A, A, 0x0F);
    AB = pmul(AB, B);

    temp = shuffle(A, A, 0xA5);
    temp = pmul(temp, shuffle(B, B, 0x4E));
    AB = psub(AB, temp);

    // DC = D#*C
    DC = shuffle(D, D, 0x0F);
    DC = pmul(DC, C);
    temp = shuffle(D, D, 0xA5);
    temp = pmul(temp, shuffle(C, C, 0x4E));
    DC = psub(DC, temp);

    // determinants of the sub-matrices
    Packet4f dA, dB, dC, dD;

    dA = pmul(shuffle(A, A, 0x5F), A);
    dA = psub(dA, shuffle(dA, dA, 0xEE));

    dB = pmul(shuffle(B, B, 0x5F), B);
    dB = psub(dB, shuffle(dB, dB, 0xEE));

    dC = pmul(shuffle(C, C, 0x5F), C);
    dC = psub(dC, shuffle(dC, dC, 0xEE));

    dD = pmul(shuffle(D, D, 0x5F), D);
    dD = psub(dD, shuffle(dD, dD, 0xEE));

    Packet4f d, d1, d2;
    Packet2f sum;
    temp = shuffle(DC, DC, 0xD8);
    d = pmul(temp, AB);
    sum = vpadd_f32(vadd_f32(vget_low_f32(d), vget_high_f32(d)), vadd_f32(vget_low_f32(d), vget_high_f32(d)));
    d = vdupq_lane_f32(sum, 0);
    d1 = pmul(dA, dD);
    d2 = pmul(dB, dC);

    // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
    Packet4f det = psub(padd(d1, d2), d);

    // reciprocal of the determinant of the input matrix, rd = 1/det
    Packet4f rd = pdiv(vdupq_n_f32(float32_t(1.0)), det);

    // Four sub-matrices of the inverse
    Packet4f iA, iB, iC, iD;

    // iD = D*|A| - C*A#*B
    temp = shuffle(C, C, 0xA0);
    temp = pmul(temp, shuffle(AB, AB, 0x44));
    iD = shuffle(C, C, 0xF5);
    iD = pmul(iD, shuffle(AB, AB, 0xEE));
    iD = padd(iD, temp);
    iD = psub(vmulq_lane_f32(D, vget_low_f32(dA), 0), iD);

    // iA = A*|D| - B*D#*C
    temp = shuffle(B, B, 0xA0);
    temp = pmul(temp, shuffle(DC, DC, 0x44));
    iA = shuffle(B, B, 0xF5);
    iA = pmul(iA, shuffle(DC, DC, 0xEE));
    iA = padd(iA, temp);
    iA = psub(vmulq_lane_f32(A, vget_low_f32(dD), 0), iA);

    // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
    iB = pmul(D, shuffle(AB, AB, 0x33));
    iB = psub(iB, pmul(shuffle(D, D, 0xB1), shuffle(AB, AB, 0x66)));
    iB = psub(vmulq_lane_f32(C, vget_low_f32(dB), 0), iB);

    // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
    iC = pmul(A, shuffle(DC, DC, 0x33));
    iC = psub(iC, pmul(shuffle(A, A, 0xB1), shuffle(DC, DC, 0x66)));
    iC = psub(vmulq_lane_f32(B, vget_low_f32(dC), 0), iC);

    const Packet4f coeff = {1.0, -1.0, -1.0, 1.0};
    rd = pmul(vdupq_lane_f32(vget_low_f32(rd), 0), coeff);
    iA = pmul(iA, rd);
    iB = pmul(iB, rd);
    iC = pmul(iC, rd);
    iD = pmul(iD, rd);

    Index res_stride = result.outerStride();
    float *res = result.data();

    pstoret<float, Packet4f, ResultAlignment>(res + 0, shuffle(iA, iB, 0x77));
    pstoret<float, Packet4f, ResultAlignment>(res + res_stride, shuffle(iA, iB, 0x22));
    pstoret<float, Packet4f, ResultAlignment>(res + 2 * res_stride, shuffle(iC, iD, 0x77));
    pstoret<float, Packet4f, ResultAlignment>(res + 3 * res_stride, shuffle(iC, iD, 0x22));
  }
};

#if EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG

// same algorithm as above, except that each operand is split into
// halves for two registers to hold.
template <typename MatrixType, typename ResultType>
struct compute_inverse_size4<Architecture::NEON, double, MatrixType, ResultType>
{
  enum
  {
    MatrixAlignment = traits<MatrixType>::Alignment,
    ResultAlignment = traits<ResultType>::Alignment,
    StorageOrdersMatch = (MatrixType::Flags & RowMajorBit) == (ResultType::Flags & RowMajorBit)
  };
  typedef typename conditional<(MatrixType::Flags & LinearAccessBit),
                               MatrixType const &,
                               typename MatrixType::PlainObject>::type
      ActualMatrixType;

  // fuctionally equivalent to _mm_shuffle_pd in SSE (i.e. shuffle(m, n, mask) equals _mm_shuffle_pd(m,n,mask))
  static Packet2d shuffle(const Packet2d &m, const Packet2d &n, int mask)
  {
    const double *a = (const double *)&m;
    const double *b = (const double *)&n;
    Packet2d res = {*(a + (mask & 1)), *(b + ((mask >> 1) & 1))};
    return res;
  }

  static void run(const MatrixType &mat, ResultType &result)
  {
    ActualMatrixType matrix(mat);

    // Four 2x2 sub-matrices of the input matrix, each is further divided into upper and lower
    // row e.g. A1, upper row of A, A2, lower row of A
    // input = [[A, B],  =  [[[A1, [B1,
    //          [C, D]]        A2], B2]],
    //                       [[C1, [D1,
    //                         C2], D2]]]

    Packet2d A1, A2, B1, B2, C1, C2, D1, D2;

    if (StorageOrdersMatch)
    {
      A1 = matrix.template packet<MatrixAlignment>(0);
      B1 = matrix.template packet<MatrixAlignment>(2);
      A2 = matrix.template packet<MatrixAlignment>(4);
      B2 = matrix.template packet<MatrixAlignment>(6);
      C1 = matrix.template packet<MatrixAlignment>(8);
      D1 = matrix.template packet<MatrixAlignment>(10);
      C2 = matrix.template packet<MatrixAlignment>(12);
      D2 = matrix.template packet<MatrixAlignment>(14);
    }
    else
    {
      Packet2d temp;
      A1 = matrix.template packet<MatrixAlignment>(0);
      C1 = matrix.template packet<MatrixAlignment>(2);
      A2 = matrix.template packet<MatrixAlignment>(4);
      C2 = matrix.template packet<MatrixAlignment>(6);

      temp = A1;
      A1 = shuffle(A1, A2, 0);
      A2 = shuffle(temp, A2, 3);

      temp = C1;
      C1 = shuffle(C1, C2, 0);
      C2 = shuffle(temp, C2, 3);

      B1 = matrix.template packet<MatrixAlignment>(8);
      D1 = matrix.template packet<MatrixAlignment>(10);
      B2 = matrix.template packet<MatrixAlignment>(12);
      D2 = matrix.template packet<MatrixAlignment>(14);

      temp = B1;
      B1 = shuffle(B1, B2, 0);
      B2 = shuffle(temp, B2, 3);

      temp = D1;
      D1 = shuffle(D1, D2, 0);
      D2 = shuffle(temp, D2, 3);
    }

    // determinants of the sub-matrices
    Packet2d dA, dB, dC, dD;

    dA = shuffle(A2, A2, 1);
    dA = pmul(A1, dA);
    dA = psub(dA, vdupq_laneq_f64(dA, 1));

    dB = shuffle(B2, B2, 1);
    dB = pmul(B1, dB);
    dB = psub(dB, vdupq_laneq_f64(dB, 1));

    dC = shuffle(C2, C2, 1);
    dC = pmul(C1, dC);
    dC = psub(dC, vdupq_laneq_f64(dC, 1));

    dD = shuffle(D2, D2, 1);
    dD = pmul(D1, dD);
    dD = psub(dD, vdupq_laneq_f64(dD, 1));

    Packet2d DC1, DC2, AB1, AB2;

    // AB = A# * B, where A# denotes the adjugate of A, and * denotes matrix product.
    AB1 = pmul(B1, vdupq_laneq_f64(A2, 1));
    AB2 = pmul(B2, vdupq_laneq_f64(A1, 0));
    AB1 = psub(AB1, pmul(B2, vdupq_laneq_f64(A1, 1)));
    AB2 = psub(AB2, pmul(B1, vdupq_laneq_f64(A2, 0)));

    // DC = D#*C
    DC1 = pmul(C1, vdupq_laneq_f64(D2, 1));
    DC2 = pmul(C2, vdupq_laneq_f64(D1, 0));
    DC1 = psub(DC1, pmul(C2, vdupq_laneq_f64(D1, 1)));
    DC2 = psub(DC2, pmul(C1, vdupq_laneq_f64(D2, 0)));

    Packet2d d1, d2;

    // determinant of the input matrix, det = |A||D| + |B||C| - trace(A#*B*D#*C)
    Packet2d det;

    // reciprocal of the determinant of the input matrix, rd = 1/det
    Packet2d rd;

    d1 = pmul(AB1, shuffle(DC1, DC2, 0));
    d2 = pmul(AB2, shuffle(DC1, DC2, 3));
    rd = padd(d1, d2);
    rd = padd(rd, vdupq_laneq_f64(rd, 1));

    d1 = pmul(dA, dD);
    d2 = pmul(dB, dC);

    det = padd(d1, d2);
    det = psub(det, rd);
    det = vdupq_laneq_f64(det, 0);
    rd = pdiv(vdupq_n_f64(float64_t(1.0)), det);

    // rows of four sub-matrices of the inverse
    Packet2d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2;

    // iD = D*|A| - C*A#*B
    iD1 = pmul(AB1, vdupq_laneq_f64(C1, 0));
    iD2 = pmul(AB1, vdupq_laneq_f64(C2, 0));
    iD1 = padd(iD1, pmul(AB2, vdupq_laneq_f64(C1, 1)));
    iD2 = padd(iD2, pmul(AB2, vdupq_laneq_f64(C2, 1)));
    dA = vdupq_laneq_f64(dA, 0);
    iD1 = psub(pmul(D1, dA), iD1);
    iD2 = psub(pmul(D2, dA), iD2);

    // iA = A*|D| - B*D#*C
    iA1 = pmul(DC1, vdupq_laneq_f64(B1, 0));
    iA2 = pmul(DC1, vdupq_laneq_f64(B2, 0));
    iA1 = padd(iA1, pmul(DC2, vdupq_laneq_f64(B1, 1)));
    iA2 = padd(iA2, pmul(DC2, vdupq_laneq_f64(B2, 1)));
    dD = vdupq_laneq_f64(dD, 0);
    iA1 = psub(pmul(A1, dD), iA1);
    iA2 = psub(pmul(A2, dD), iA2);

    // iB = C*|B| - D * (A#B)# = C*|B| - D*B#*A
    iB1 = pmul(D1, shuffle(AB2, AB1, 1));
    iB2 = pmul(D2, shuffle(AB2, AB1, 1));
    iB1 = psub(iB1, pmul(shuffle(D1, D1, 1), shuffle(AB2, AB1, 2)));
    iB2 = psub(iB2, pmul(shuffle(D2, D2, 1), shuffle(AB2, AB1, 2)));
    dB = vdupq_laneq_f64(dB, 0);
    iB1 = psub(pmul(C1, dB), iB1);
    iB2 = psub(pmul(C2, dB), iB2);

    // iC = B*|C| - A * (D#C)# = B*|C| - A*C#*D
    iC1 = pmul(A1, shuffle(DC2, DC1, 1));
    iC2 = pmul(A2, shuffle(DC2, DC1, 1));
    iC1 = psub(iC1, pmul(shuffle(A1, A1, 1), shuffle(DC2, DC1, 2)));
    iC2 = psub(iC2, pmul(shuffle(A2, A2, 1), shuffle(DC2, DC1, 2)));
    dC = vdupq_laneq_f64(dC, 0);
    iC1 = psub(pmul(B1, dC), iC1);
    iC2 = psub(pmul(B2, dC), iC2);

    const Packet2d PN = {1.0, -1.0};
    const Packet2d NP = {-1.0, 1.0};
    d1 = pmul(PN, rd);
    d2 = pmul(NP, rd);

    Index res_stride = result.outerStride();
    double *res = result.data();
    pstoret<double, Packet2d, ResultAlignment>(res + 0, pmul(shuffle(iA2, iA1, 3), d1));
    pstoret<double, Packet2d, ResultAlignment>(res + res_stride, pmul(shuffle(iA2, iA1, 0), d2));
    pstoret<double, Packet2d, ResultAlignment>(res + 2, pmul(shuffle(iB2, iB1, 3), d1));
    pstoret<double, Packet2d, ResultAlignment>(res + res_stride + 2, pmul(shuffle(iB2, iB1, 0), d2));
    pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride, pmul(shuffle(iC2, iC1, 3), d1));
    pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride, pmul(shuffle(iC2, iC1, 0), d2));
    pstoret<double, Packet2d, ResultAlignment>(res + 2 * res_stride + 2, pmul(shuffle(iD2, iD1, 3), d1));
    pstoret<double, Packet2d, ResultAlignment>(res + 3 * res_stride + 2, pmul(shuffle(iD2, iD1, 0), d2));
  }
};

#endif  // EIGEN_ARCH_ARM64 && !EIGEN_APPLE_DOUBLE_NEON_BUG

} // namespace internal
} // namespace Eigen
#endif