1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PARTIALLU_H
#define EIGEN_PARTIALLU_H
/** \ingroup LU_Module
*
* \class PartialLU
*
* \brief LU decomposition of a matrix with partial pivoting, and related features
*
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
*
* This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
* is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
* is a permutation matrix.
*
* Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible matrices.
* So in this class, we plainly require that and take advantage of that to do some simplifications and optimizations.
* This class will assert that the matrix is square, but it won't (actually it can't) check that the matrix is invertible:
* it is your task to check that you only use this decomposition on invertible matrices.
*
* The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided by class LU.
*
* This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
* such as rank computation. If you need these features, use class LU.
*
* This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses. On the other hand,
* it is \b not suitable to determine whether a given matrix is invertible.
*
* The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
*
* \sa MatrixBase::partialLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class LU
*/
template<typename MatrixType> class PartialLU
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN(
MatrixType::MaxColsAtCompileTime,
MatrixType::MaxRowsAtCompileTime)
};
/**
* \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via PartialLU::compute(const MatrixType&).
*/
PartialLU();
/** Constructor.
*
* \param matrix the matrix of which to compute the LU decomposition.
*
* \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
* If you need to deal with non-full rank, use class LU instead.
*/
PartialLU(const MatrixType& matrix);
PartialLU& compute(const MatrixType& matrix);
/** \returns the LU decomposition matrix: the upper-triangular part is U, the
* unit-lower-triangular part is L (at least for square matrices; in the non-square
* case, special care is needed, see the documentation of class LU).
*
* \sa matrixL(), matrixU()
*/
inline const MatrixType& matrixLU() const
{
ei_assert(m_isInitialized && "PartialLU is not initialized.");
return m_lu;
}
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
* representing the P permutation i.e. the permutation of the rows. For its precise meaning,
* see the examples given in the documentation of class LU.
*/
inline const IntColVectorType& permutationP() const
{
ei_assert(m_isInitialized && "PartialLU is not initialized.");
return m_p;
}
/** This method finds the solution x to the equation Ax=b, where A is the matrix of which
* *this is the LU decomposition. Since if this partial pivoting decomposition the matrix is assumed
* to have full rank, such a solution is assumed to exist and to be unique.
*
* \warning Again, if your matrix may not have full rank, use class LU instead. See LU::solve().
*
* \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
* the only requirement in order for the equation to make sense is that
* b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
* \param result a pointer to the vector or matrix in which to store the solution, if any exists.
* Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
* If no solution exists, *result is left with undefined coefficients.
*
* Example: \include PartialLU_solve.cpp
* Output: \verbinclude PartialLU_solve.out
*
* \sa TriangularView::solve(), inverse(), computeInverse()
*/
template<typename OtherDerived, typename ResultType>
void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
/** \returns the determinant of the matrix of which
* *this is the LU decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the LU decomposition has already been computed.
*
* \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
* optimized paths.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
*
* \sa MatrixBase::determinant()
*/
typename ei_traits<MatrixType>::Scalar determinant() const;
/** Computes the inverse of the matrix of which *this is the LU decomposition.
*
* \param result a pointer to the matrix into which to store the inverse. Resized if needed.
*
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
* invertibility, use class LU instead.
*
* \sa MatrixBase::computeInverse(), inverse()
*/
inline void computeInverse(MatrixType *result) const
{
solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
}
/** \returns the inverse of the matrix of which *this is the LU decomposition.
*
* \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
* invertibility, use class LU instead.
*
* \sa computeInverse(), MatrixBase::inverse()
*/
inline MatrixType inverse() const
{
MatrixType result;
computeInverse(&result);
return result;
}
protected:
MatrixType m_lu;
IntColVectorType m_p;
int m_det_p;
bool m_isInitialized;
};
template<typename MatrixType>
PartialLU<MatrixType>::PartialLU()
: m_lu(),
m_p(),
m_det_p(0),
m_isInitialized(false)
{
}
template<typename MatrixType>
PartialLU<MatrixType>::PartialLU(const MatrixType& matrix)
: m_lu(),
m_p(),
m_det_p(0),
m_isInitialized(false)
{
compute(matrix);
}
/** This is the blocked version of ei_lu_unblocked() */
template<typename Scalar, int StorageOrder>
struct ei_partial_lu_impl
{
// FIXME add a stride to Map, so that the following mapping becomes easier,
// another option would be to create an expression being able to automatically
// warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly
// a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix,
// and Block.
typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU;
typedef Block<MapLU, Dynamic, Dynamic> MatrixType;
typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
/** \internal performs the LU decomposition in-place of the matrix \a lu
* using an unblocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*/
static void unblocked_lu(MatrixType& lu, int* row_transpositions, int& nb_transpositions)
{
const int rows = lu.rows();
const int size = std::min(lu.rows(),lu.cols());
nb_transpositions = 0;
for(int k = 0; k < size; ++k)
{
int row_of_biggest_in_col;
lu.block(k,k,rows-k,1).cwise().abs().maxCoeff(&row_of_biggest_in_col);
row_of_biggest_in_col += k;
row_transpositions[k] = row_of_biggest_in_col;
if(k != row_of_biggest_in_col)
{
lu.row(k).swap(lu.row(row_of_biggest_in_col));
++nb_transpositions;
}
if(k<rows-1)
{
int rrows = rows-k-1;
int rsize = size-k-1;
lu.col(k).end(rrows) /= lu.coeff(k,k);
lu.corner(BottomRight,rrows,rsize).noalias() -= lu.col(k).end(rrows) * lu.row(k).end(rsize);
}
}
}
/** \internal performs the LU decomposition in-place of the matrix represented
* by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a
* recursive, blocked algorithm.
*
* In addition, this function returns the row transpositions in the
* vector \a row_transpositions which must have a size equal to the number
* of columns of the matrix \a lu, and an integer \a nb_transpositions
* which returns the actual number of transpositions.
*
* \note This very low level interface using pointers, etc. is to:
* 1 - reduce the number of instanciations to the strict minimum
* 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > >
*/
static void blocked_lu(int rows, int cols, Scalar* lu_data, int luStride, int* row_transpositions, int& nb_transpositions, int maxBlockSize=256)
{
MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols);
MatrixType lu(lu1,0,0,rows,cols);
const int size = std::min(rows,cols);
// if the matrix is too small, no blocking:
if(size<=16)
{
unblocked_lu(lu, row_transpositions, nb_transpositions);
return;
}
// automatically adjust the number of subdivisions to the size
// of the matrix so that there is enough sub blocks:
int blockSize;
{
blockSize = size/8;
blockSize = (blockSize/16)*16;
blockSize = std::min(std::max(blockSize,8), maxBlockSize);
}
nb_transpositions = 0;
for(int k = 0; k < size; k+=blockSize)
{
int bs = std::min(size-k,blockSize); // actual size of the block
int trows = rows - k - bs; // trailing rows
int tsize = size - k - bs; // trailing size
// partition the matrix:
// A00 | A01 | A02
// lu = A10 | A11 | A12
// A20 | A21 | A22
BlockType A_0(lu,0,0,rows,k);
BlockType A_2(lu,0,k+bs,rows,tsize);
BlockType A11(lu,k,k,bs,bs);
BlockType A12(lu,k,k+bs,bs,tsize);
BlockType A21(lu,k+bs,k,trows,bs);
BlockType A22(lu,k+bs,k+bs,trows,tsize);
int nb_transpositions_in_panel;
// recursively calls the blocked LU algorithm with a very small
// blocking size:
blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride,
row_transpositions+k, nb_transpositions_in_panel, 16);
nb_transpositions += nb_transpositions_in_panel;
// update permutations and apply them to A10
for(int i=k;i<k+bs; ++i)
{
int piv = (row_transpositions[i] += k);
A_0.row(i).swap(A_0.row(piv));
}
if(trows)
{
// apply permutations to A_2
for(int i=k;i<k+bs; ++i)
A_2.row(i).swap(A_2.row(row_transpositions[i]));
// A12 = A11^-1 A12
A11.template triangularView<UnitLowerTriangular>().solveInPlace(A12);
A22 -= A21 * A12;
}
}
}
};
/** \internal performs the LU decomposition with partial pivoting in-place.
*/
template<typename MatrixType, typename IntVector>
void ei_partial_lu_inplace(MatrixType& lu, IntVector& row_transpositions, int& nb_transpositions)
{
ei_assert(lu.cols() == row_transpositions.size());
ei_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1);
ei_partial_lu_impl
<typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor>
::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.stride(), &row_transpositions.coeffRef(0), nb_transpositions);
}
template<typename MatrixType>
PartialLU<MatrixType>& PartialLU<MatrixType>::compute(const MatrixType& matrix)
{
m_lu = matrix;
m_p.resize(matrix.rows());
ei_assert(matrix.rows() == matrix.cols() && "PartialLU is only for square (and moreover invertible) matrices");
const int size = matrix.rows();
IntColVectorType rows_transpositions(size);
int nb_transpositions;
ei_partial_lu_inplace(m_lu, rows_transpositions, nb_transpositions);
m_det_p = (nb_transpositions%2) ? -1 : 1;
for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k;
for(int k = size-1; k >= 0; --k)
std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
m_isInitialized = true;
return *this;
}
template<typename MatrixType>
typename ei_traits<MatrixType>::Scalar PartialLU<MatrixType>::determinant() const
{
ei_assert(m_isInitialized && "PartialLU is not initialized.");
return Scalar(m_det_p) * m_lu.diagonal().prod();
}
template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
void PartialLU<MatrixType>::solve(
const MatrixBase<OtherDerived>& b,
ResultType *result
) const
{
ei_assert(m_isInitialized && "PartialLU is not initialized.");
/* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
* So we proceed as follows:
* Step 1: compute c = Pb.
* Step 2: replace c by the solution x to Lx = c.
* Step 3: replace c by the solution x to Ux = c.
*/
const int size = m_lu.rows();
ei_assert(b.rows() == size);
result->resize(size, b.cols());
// Step 1
for(int i = 0; i < size; ++i) result->row(m_p.coeff(i)) = b.row(i);
// Step 2
m_lu.template triangularView<UnitLowerTriangular>().solveInPlace(*result);
// Step 3
m_lu.template triangularView<UpperTriangular>().solveInPlace(*result);
}
/** \lu_module
*
* \return the LU decomposition of \c *this.
*
* \sa class LU
*/
template<typename Derived>
inline const PartialLU<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::partialLu() const
{
return PartialLU<PlainMatrixType>(eval());
}
#endif // EIGEN_PARTIALLU_H
|