1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INVERSE_IMPL_H
#define EIGEN_INVERSE_IMPL_H
namespace Eigen {
namespace internal {
/**********************************
*** General case implementation ***
**********************************/
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
result = matrix.partialPivLu().inverse();
}
};
template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime>
struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ };
/****************************
*** Size 1 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 1>
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename MatrixType::Scalar Scalar;
typename internal::evaluator<MatrixType>::type matrixEval(matrix);
result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& result,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
determinant = matrix.coeff(0,0);
invertible = abs(determinant) > absDeterminantThreshold;
if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant;
}
};
/****************************
*** Size 2 implementation ***
****************************/
template<typename MatrixType, typename ResultType>
EIGEN_DEVICE_FUNC
inline void compute_inverse_size2_helper(
const MatrixType& matrix, const typename ResultType::Scalar& invdet,
ResultType& result)
{
result.coeffRef(0,0) = matrix.coeff(1,1) * invdet;
result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
result.coeffRef(1,1) = matrix.coeff(0,0) * invdet;
}
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 2>
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant();
compute_inverse_size2_helper(matrix, invdet, result);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
typedef typename ResultType::Scalar Scalar;
determinant = matrix.determinant();
invertible = abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
compute_inverse_size2_helper(matrix, invdet, inverse);
}
};
/****************************
*** Size 3 implementation ***
****************************/
template<typename MatrixType, int i, int j>
EIGEN_DEVICE_FUNC
inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m)
{
enum {
i1 = (i+1) % 3,
i2 = (i+2) % 3,
j1 = (j+1) % 3,
j2 = (j+2) % 3
};
return m.coeff(i1, j1) * m.coeff(i2, j2)
- m.coeff(i1, j2) * m.coeff(i2, j1);
}
template<typename MatrixType, typename ResultType>
EIGEN_DEVICE_FUNC
inline void compute_inverse_size3_helper(
const MatrixType& matrix,
const typename ResultType::Scalar& invdet,
const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0,
ResultType& result)
{
result.row(0) = cofactors_col0 * invdet;
result.coeffRef(1,0) = cofactor_3x3<MatrixType,0,1>(matrix) * invdet;
result.coeffRef(1,1) = cofactor_3x3<MatrixType,1,1>(matrix) * invdet;
result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet;
result.coeffRef(2,0) = cofactor_3x3<MatrixType,0,2>(matrix) * invdet;
result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet;
result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet;
}
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 3>
{
EIGEN_DEVICE_FUNC
static inline void run(const MatrixType& matrix, ResultType& result)
{
typedef typename ResultType::Scalar Scalar;
Matrix<typename MatrixType::Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
const Scalar invdet = Scalar(1) / det;
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result);
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
typedef typename ResultType::Scalar Scalar;
Matrix<Scalar,3,1> cofactors_col0;
cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix);
cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix);
cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix);
determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum();
invertible = abs(determinant) > absDeterminantThreshold;
if(!invertible) return;
const Scalar invdet = Scalar(1) / determinant;
compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse);
}
};
/****************************
*** Size 4 implementation ***
****************************/
template<typename Derived>
EIGEN_DEVICE_FUNC
inline const typename Derived::Scalar general_det3_helper
(const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3)
{
return matrix.coeff(i1,j1)
* (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2));
}
template<typename MatrixType, int i, int j>
EIGEN_DEVICE_FUNC
inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix)
{
enum {
i1 = (i+1) % 4,
i2 = (i+2) % 4,
i3 = (i+3) % 4,
j1 = (j+1) % 4,
j2 = (j+2) % 4,
j3 = (j+3) % 4
};
return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3)
+ general_det3_helper(matrix, i2, i3, i1, j1, j2, j3)
+ general_det3_helper(matrix, i3, i1, i2, j1, j2, j3);
}
template<int Arch, typename Scalar, typename MatrixType, typename ResultType>
struct compute_inverse_size4
{
EIGEN_DEVICE_FUNC
static void run(const MatrixType& matrix, ResultType& result)
{
result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix);
result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix);
result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix);
result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix);
result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix);
result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix);
result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix);
result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix);
result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix);
result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix);
result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix);
result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix);
result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix);
result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix);
result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix);
result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix);
result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum();
}
};
template<typename MatrixType, typename ResultType>
struct compute_inverse<MatrixType, ResultType, 4>
: compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar,
MatrixType, ResultType>
{
};
template<typename MatrixType, typename ResultType>
struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4>
{
EIGEN_DEVICE_FUNC
static inline void run(
const MatrixType& matrix,
const typename MatrixType::RealScalar& absDeterminantThreshold,
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible
)
{
using std::abs;
determinant = matrix.determinant();
invertible = abs(determinant) > absDeterminantThreshold;
if(invertible) compute_inverse<MatrixType, ResultType>::run(matrix, inverse);
}
};
/*************************
*** MatrixBase methods ***
*************************/
} // end namespace internal
namespace internal {
// Specialization for "dense = dense_xpr.inverse()"
template<typename DstXprType, typename XprType, typename Scalar>
struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<Scalar>, Dense2Dense, Scalar>
{
typedef Inverse<XprType> SrcXprType;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
{
// FIXME shall we resize dst here?
const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime);
EIGEN_ONLY_USED_FOR_DEBUG(Size);
eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst)))
&& "Aliasing problem detected in inverse(), you need to do inverse().eval() here.");
typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType;
typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded;
ActualXprType actual_xpr(src.nestedExpression());
compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst);
}
};
} // end namespace internal
/** \lu_module
*
* \returns the matrix inverse of this matrix.
*
* For small fixed sizes up to 4x4, this method uses cofactors.
* In the general case, this method uses class PartialPivLU.
*
* \note This matrix must be invertible, otherwise the result is undefined. If you need an
* invertibility check, do the following:
* \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck().
* \li for the general case, use class FullPivLU.
*
* Example: \include MatrixBase_inverse.cpp
* Output: \verbinclude MatrixBase_inverse.out
*
* \sa computeInverseAndDetWithCheck()
*/
template<typename Derived>
inline const Inverse<Derived> MatrixBase<Derived>::inverse() const
{
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES)
eigen_assert(rows() == cols());
return Inverse<Derived>(derived());
}
/** \lu_module
*
* Computation of matrix inverse and determinant, with invertibility check.
*
* This is only for fixed-size square matrices of size up to 4x4.
*
* \param inverse Reference to the matrix in which to store the inverse.
* \param determinant Reference to the variable in which to store the determinant.
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
* The matrix will be declared invertible if the absolute value of its
* determinant is greater than this threshold.
*
* Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp
* Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out
*
* \sa inverse(), computeInverseWithCheck()
*/
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold
) const
{
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
eigen_assert(rows() == cols());
// for 2x2, it's worth giving a chance to avoid evaluating.
// for larger sizes, evaluating has negligible cost and limits code size.
typedef typename internal::conditional<
RowsAtCompileTime == 2,
typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type,
PlainObject
>::type MatrixType;
internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run
(derived(), absDeterminantThreshold, inverse, determinant, invertible);
}
/** \lu_module
*
* Computation of matrix inverse, with invertibility check.
*
* This is only for fixed-size square matrices of size up to 4x4.
*
* \param inverse Reference to the matrix in which to store the inverse.
* \param invertible Reference to the bool variable in which to store whether the matrix is invertible.
* \param absDeterminantThreshold Optional parameter controlling the invertibility check.
* The matrix will be declared invertible if the absolute value of its
* determinant is greater than this threshold.
*
* Example: \include MatrixBase_computeInverseWithCheck.cpp
* Output: \verbinclude MatrixBase_computeInverseWithCheck.out
*
* \sa inverse(), computeInverseAndDetWithCheck()
*/
template<typename Derived>
template<typename ResultType>
inline void MatrixBase<Derived>::computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold
) const
{
RealScalar determinant;
// i'd love to put some static assertions there, but SFINAE means that they have no effect...
eigen_assert(rows() == cols());
computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold);
}
} // end namespace Eigen
#endif // EIGEN_INVERSE_IMPL_H
|