aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/LU/Inverse.h
blob: a4f7033838050bd4c7fe5e79db642b97e43be12e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_INVERSE_H
#define EIGEN_INVERSE_H

/** \lu_module
  *
  * \class Inverse
  *
  * \brief Inverse of a matrix
  *
  * \param MatrixType the type of the matrix of which we are taking the inverse
  * \param CheckExistence whether or not to check the existence of the inverse while computing it
  *
  * This class represents the inverse of a matrix. It is the return
  * type of MatrixBase::inverse() and most of the time this is the only way it
  * is used.
  *
  * \sa MatrixBase::inverse(), MatrixBase::quickInverse()
  */
template<typename MatrixType, bool CheckExistence>
struct ei_traits<Inverse<MatrixType, CheckExistence> >
{
  typedef typename MatrixType::Scalar Scalar;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    Flags = MatrixType::Flags,
    CoeffReadCost = MatrixType::CoeffReadCost
  };
};

template<typename MatrixType, bool CheckExistence> class Inverse : ei_no_assignment_operator,
  public MatrixBase<Inverse<MatrixType, CheckExistence> >
{
  public:

    EIGEN_GENERIC_PUBLIC_INTERFACE(Inverse)

    Inverse(const MatrixType& matrix)
      : m_inverse(MatrixType::identity(matrix.rows(), matrix.cols()))
    {
      if(CheckExistence) m_exists = true;
      ei_assert(matrix.rows() == matrix.cols());
      _compute(matrix);
    }

    /** \returns whether or not the inverse exists.
      *
      * \note This method is only available if CheckExistence is set to true, which is the default value.
      *       For instance, when using quickInverse(), this method is not available.
      */
    bool exists() const { assert(CheckExistence); return m_exists; }

    int rows() const { return m_inverse.rows(); }
    int cols() const { return m_inverse.cols(); }

    const Scalar coeff(int row, int col) const
    {
      return m_inverse.coeff(row, col);
    }

    template<int LoadMode>
    PacketScalar packet(int row, int col) const
    {
      return m_inverse.template packet<LoadMode>(row, col);
    }

    enum { _Size = MatrixType::RowsAtCompileTime };
    void _compute(const MatrixType& matrix);
    void _compute_in_general_case(const MatrixType& matrix);
    void _compute_in_size2_case(const MatrixType& matrix);
    void _compute_in_size3_case(const MatrixType& matrix);
    void _compute_in_size4_case(const MatrixType& matrix);

  protected:
    bool m_exists;
    typename MatrixType::Eval m_inverse;
};

template<typename MatrixType, bool CheckExistence>
void Inverse<MatrixType, CheckExistence>
::_compute_in_general_case(const MatrixType& _matrix)
{
  MatrixType matrix(_matrix);
  const RealScalar max = CheckExistence ? matrix.cwiseAbs().maxCoeff()
                                        : static_cast<RealScalar>(0);
  const int size = matrix.rows();
  for(int k = 0; k < size-1; k++)
  {
    int rowOfBiggest;
    const RealScalar max_in_this_col
      = matrix.col(k).end(size-k).cwiseAbs().maxCoeff(&rowOfBiggest);
    if(CheckExistence && ei_isMuchSmallerThan(max_in_this_col, max))
    { m_exists = false; return; }

    m_inverse.row(k).swap(m_inverse.row(k+rowOfBiggest));
    matrix.row(k).swap(matrix.row(k+rowOfBiggest));

    const Scalar d = matrix(k,k);
    m_inverse.block(k+1, 0, size-k-1, size)
      -= matrix.col(k).end(size-k-1) * (m_inverse.row(k) / d);
    matrix.corner(BottomRight, size-k-1, size-k)
      -= matrix.col(k).end(size-k-1) * (matrix.row(k).end(size-k) / d);
  }

  for(int k = 0; k < size-1; k++)
  {
    const Scalar d = static_cast<Scalar>(1)/matrix(k,k);
    matrix.row(k).end(size-k) *= d;
    m_inverse.row(k) *= d;
  }
  if(CheckExistence && ei_isMuchSmallerThan(matrix(size-1,size-1), max))
  { m_exists = false; return; }
  m_inverse.row(size-1) /= matrix(size-1,size-1);

  for(int k = size-1; k >= 1; k--)
  {
    m_inverse.block(0,0,k,size) -= matrix.col(k).start(k) * m_inverse.row(k);
  }
}

template<typename ExpressionType, bool CheckExistence>
bool ei_compute_size2_inverse(const ExpressionType& xpr, typename ExpressionType::Eval* result)
{
  typedef typename ExpressionType::Scalar Scalar;
  const typename ei_nested<ExpressionType, 1+CheckExistence>::type matrix(xpr);
  const Scalar det = matrix.determinant();
  if(CheckExistence && ei_isMuchSmallerThan(det, matrix.cwiseAbs().maxCoeff()))
    return false;
  const Scalar invdet = static_cast<Scalar>(1) / det;
  result->coeffRef(0,0) = matrix.coeff(1,1) * invdet;
  result->coeffRef(1,0) = -matrix.coeff(1,0) * invdet;
  result->coeffRef(0,1) = -matrix.coeff(0,1) * invdet;
  result->coeffRef(1,1) = matrix.coeff(0,0) * invdet;
  return true;
}

template<typename MatrixType, bool CheckExistence>
void Inverse<MatrixType, CheckExistence>::_compute_in_size3_case(const MatrixType& matrix)
{
  const Scalar det_minor00 = matrix.minor(0,0).determinant();
  const Scalar det_minor10 = matrix.minor(1,0).determinant();
  const Scalar det_minor20 = matrix.minor(2,0).determinant();
  const Scalar det = det_minor00 * matrix.coeff(0,0)
                   - det_minor10 * matrix.coeff(1,0)
                   + det_minor20 * matrix.coeff(2,0);
  if(CheckExistence && ei_isMuchSmallerThan(det, matrix.cwiseAbs().maxCoeff()))
    m_exists = false;
  else
  {
    const Scalar invdet = static_cast<Scalar>(1) / det;
    m_inverse.coeffRef(0, 0) = det_minor00 * invdet;
    m_inverse.coeffRef(0, 1) = -det_minor10 * invdet;
    m_inverse.coeffRef(0, 2) = det_minor20 * invdet;
    m_inverse.coeffRef(1, 0) = -matrix.minor(0,1).determinant() * invdet;
    m_inverse.coeffRef(1, 1) = matrix.minor(1,1).determinant() * invdet;
    m_inverse.coeffRef(1, 2) = -matrix.minor(2,1).determinant() * invdet;
    m_inverse.coeffRef(2, 0) = matrix.minor(0,2).determinant() * invdet;
    m_inverse.coeffRef(2, 1) = -matrix.minor(1,2).determinant() * invdet;
    m_inverse.coeffRef(2, 2) = matrix.minor(2,2).determinant() * invdet;
  }
}

template<typename MatrixType, bool CheckExistence>
void Inverse<MatrixType, CheckExistence>::_compute_in_size4_case(const MatrixType& matrix)
{
  /* Let's split M into four 2x2 blocks:
    * (P Q)
    * (R S)
    * If P is invertible, with inverse denoted by P_inverse, and if
    * (S - R*P_inverse*Q) is also invertible, then the inverse of M is
    * (P' Q')
    * (R' S')
    * where
    * S' = (S - R*P_inverse*Q)^(-1)
    * P' = P1 + (P1*Q) * S' *(R*P_inverse)
    * Q' = -(P_inverse*Q) * S'
    * R' = -S' * (R*P_inverse)
    */
  typedef Block<MatrixType,2,2> XprBlock22;
  typedef typename XprBlock22::Eval Block22;
  Block22 P_inverse;

  if(ei_compute_size2_inverse<XprBlock22, true>(matrix.template block<2,2>(0,0), &P_inverse))
  {
    const Block22 Q = matrix.template block<2,2>(0,2);
    const Block22 P_inverse_times_Q = P_inverse * Q;
    const XprBlock22 R = matrix.template block<2,2>(2,0);
    const Block22 R_times_P_inverse = R * P_inverse;
    const Block22 R_times_P_inverse_times_Q = R_times_P_inverse * Q;
    const XprBlock22 S = matrix.template block<2,2>(2,2);
    const Block22 X = S - R_times_P_inverse_times_Q;
    Block22 Y;
    if(ei_compute_size2_inverse<Block22, CheckExistence>(X, &Y))
    {
      m_inverse.template block<2,2>(2,2) = Y;
      m_inverse.template block<2,2>(2,0) = - Y * R_times_P_inverse;
      const Block22 Z = P_inverse_times_Q * Y;
      m_inverse.template block<2,2>(0,2) = - Z;
      m_inverse.template block<2,2>(0,0) = P_inverse + Z * R_times_P_inverse;
    }
    else
    {
      m_exists = false; return;
    }
  }
  else
  {
    _compute_in_general_case(matrix);
  }
}

template<typename MatrixType, bool CheckExistence>
void Inverse<MatrixType, CheckExistence>::_compute(const MatrixType& matrix)
{
  if(_Size == 1)
  {
    const Scalar x = matrix.coeff(0,0);
    if(CheckExistence && x == static_cast<Scalar>(0))
      m_exists = false;
    else
      m_inverse.coeffRef(0,0) = static_cast<Scalar>(1) / x;
  }
  else if(_Size == 2)
  {
    if(CheckExistence)
      m_exists = ei_compute_size2_inverse<MatrixType, true>(matrix, &m_inverse);
    else
      ei_compute_size2_inverse<MatrixType, false>(matrix, &m_inverse);
  }
  else if(_Size == 3) _compute_in_size3_case(matrix);
  else if(_Size == 4) _compute_in_size4_case(matrix);
  else _compute_in_general_case(matrix);
}

/** \lu_module
  *
  * \returns the matrix inverse of \c *this, if it exists.
  *
  * Example: \include MatrixBase_inverse.cpp
  * Output: \verbinclude MatrixBase_inverse.out
  *
  * \sa class Inverse
  */
template<typename Derived>
const Inverse<typename ei_eval<Derived>::type, true>
MatrixBase<Derived>::inverse() const
{
  return Inverse<typename Derived::Eval, true>(eval());
}

/** \lu_module
  *
  * \returns the matrix inverse of \c *this, which is assumed to exist.
  *
  * Example: \include MatrixBase_quickInverse.cpp
  * Output: \verbinclude MatrixBase_quickInverse.out
  *
  * \sa class Inverse
  */
template<typename Derived>
const Inverse<typename ei_eval<Derived>::type, false>
MatrixBase<Derived>::quickInverse() const
{
  return Inverse<typename Derived::Eval, false>(eval());
}

#endif // EIGEN_INVERSE_H