aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/LU/FullPivLU.h
blob: fdf2e06423b050ac2ab64c48e50e7dd16bca7b35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_LU_H
#define EIGEN_LU_H

namespace Eigen { 

namespace internal {
template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
 : traits<_MatrixType>
{
  enum { Flags = 0 };
};

} // end namespace internal

/** \ingroup LU_Module
  *
  * \class FullPivLU
  *
  * \brief LU decomposition of a matrix with complete pivoting, and related features
  *
  * \param MatrixType the type of the matrix of which we are computing the LU decomposition
  *
  * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
  * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
  * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
  * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
  * zeros are at the end.
  *
  * This decomposition provides the generic approach to solving systems of linear equations, computing
  * the rank, invertibility, inverse, kernel, and determinant.
  *
  * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
  * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
  * working with the SVD allows to select the smallest singular values of the matrix, something that
  * the LU decomposition doesn't see.
  *
  * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
  * permutationP(), permutationQ().
  *
  * As an exemple, here is how the original matrix can be retrieved:
  * \include class_FullPivLU.cpp
  * Output: \verbinclude class_FullPivLU.out
  *
  * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
  */
template<typename _MatrixType> class FullPivLU
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options,
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
    typedef typename MatrixType::Index Index;
    typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
    typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
    typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
    typedef typename MatrixType::PlainObject PlainObject;

    /**
      * \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via LU::compute(const MatrixType&).
      */
    FullPivLU();

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa FullPivLU()
      */
    FullPivLU(Index rows, Index cols);

    /** Constructor.
      *
      * \param matrix the matrix of which to compute the LU decomposition.
      *               It is required to be nonzero.
      */
    FullPivLU(const MatrixType& matrix);

    /** Computes the LU decomposition of the given matrix.
      *
      * \param matrix the matrix of which to compute the LU decomposition.
      *               It is required to be nonzero.
      *
      * \returns a reference to *this
      */
    FullPivLU& compute(const MatrixType& matrix);

    /** \returns the LU decomposition matrix: the upper-triangular part is U, the
      * unit-lower-triangular part is L (at least for square matrices; in the non-square
      * case, special care is needed, see the documentation of class FullPivLU).
      *
      * \sa matrixL(), matrixU()
      */
    inline const MatrixType& matrixLU() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return m_lu;
    }

    /** \returns the number of nonzero pivots in the LU decomposition.
      * Here nonzero is meant in the exact sense, not in a fuzzy sense.
      * So that notion isn't really intrinsically interesting, but it is
      * still useful when implementing algorithms.
      *
      * \sa rank()
      */
    inline Index nonzeroPivots() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return m_nonzero_pivots;
    }

    /** \returns the absolute value of the biggest pivot, i.e. the biggest
      *          diagonal coefficient of U.
      */
    RealScalar maxPivot() const { return m_maxpivot; }

    /** \returns the permutation matrix P
      *
      * \sa permutationQ()
      */
    inline const PermutationPType& permutationP() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return m_p;
    }

    /** \returns the permutation matrix Q
      *
      * \sa permutationP()
      */
    inline const PermutationQType& permutationQ() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return m_q;
    }

    /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
      * will form a basis of the kernel.
      *
      * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      *
      * Example: \include FullPivLU_kernel.cpp
      * Output: \verbinclude FullPivLU_kernel.out
      *
      * \sa image()
      */
    inline const internal::kernel_retval<FullPivLU> kernel() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return internal::kernel_retval<FullPivLU>(*this);
    }

    /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
      * will form a basis of the kernel.
      *
      * \param originalMatrix the original matrix, of which *this is the LU decomposition.
      *                       The reason why it is needed to pass it here, is that this allows
      *                       a large optimization, as otherwise this method would need to reconstruct it
      *                       from the LU decomposition.
      *
      * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      *
      * Example: \include FullPivLU_image.cpp
      * Output: \verbinclude FullPivLU_image.out
      *
      * \sa kernel()
      */
    inline const internal::image_retval<FullPivLU>
      image(const MatrixType& originalMatrix) const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return internal::image_retval<FullPivLU>(*this, originalMatrix);
    }

    /** \return a solution x to the equation Ax=b, where A is the matrix of which
      * *this is the LU decomposition.
      *
      * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
      *          the only requirement in order for the equation to make sense is that
      *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
      *
      * \returns a solution.
      *
      * \note_about_checking_solutions
      *
      * \note_about_arbitrary_choice_of_solution
      * \note_about_using_kernel_to_study_multiple_solutions
      *
      * Example: \include FullPivLU_solve.cpp
      * Output: \verbinclude FullPivLU_solve.out
      *
      * \sa TriangularView::solve(), kernel(), inverse()
      */
    template<typename Rhs>
    inline const Solve<FullPivLU, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return Solve<FullPivLU, Rhs>(*this, b.derived());
    }

    /** \returns the determinant of the matrix of which
      * *this is the LU decomposition. It has only linear complexity
      * (that is, O(n) where n is the dimension of the square matrix)
      * as the LU decomposition has already been computed.
      *
      * \note This is only for square matrices.
      *
      * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
      *       optimized paths.
      *
      * \warning a determinant can be very big or small, so for matrices
      * of large enough dimension, there is a risk of overflow/underflow.
      *
      * \sa MatrixBase::determinant()
      */
    typename internal::traits<MatrixType>::Scalar determinant() const;

    /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
      * who need to determine when pivots are to be considered nonzero. This is not used for the
      * LU decomposition itself.
      *
      * When it needs to get the threshold value, Eigen calls threshold(). By default, this
      * uses a formula to automatically determine a reasonable threshold.
      * Once you have called the present method setThreshold(const RealScalar&),
      * your value is used instead.
      *
      * \param threshold The new value to use as the threshold.
      *
      * A pivot will be considered nonzero if its absolute value is strictly greater than
      *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
      * where maxpivot is the biggest pivot.
      *
      * If you want to come back to the default behavior, call setThreshold(Default_t)
      */
    FullPivLU& setThreshold(const RealScalar& threshold)
    {
      m_usePrescribedThreshold = true;
      m_prescribedThreshold = threshold;
      return *this;
    }

    /** Allows to come back to the default behavior, letting Eigen use its default formula for
      * determining the threshold.
      *
      * You should pass the special object Eigen::Default as parameter here.
      * \code lu.setThreshold(Eigen::Default); \endcode
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    FullPivLU& setThreshold(Default_t)
    {
      m_usePrescribedThreshold = false;
      return *this;
    }

    /** Returns the threshold that will be used by certain methods such as rank().
      *
      * See the documentation of setThreshold(const RealScalar&).
      */
    RealScalar threshold() const
    {
      eigen_assert(m_isInitialized || m_usePrescribedThreshold);
      return m_usePrescribedThreshold ? m_prescribedThreshold
      // this formula comes from experimenting (see "LU precision tuning" thread on the list)
      // and turns out to be identical to Higham's formula used already in LDLt.
                                      : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
    }

    /** \returns the rank of the matrix of which *this is the LU decomposition.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline Index rank() const
    {
      using std::abs;
      eigen_assert(m_isInitialized && "LU is not initialized.");
      RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
      Index result = 0;
      for(Index i = 0; i < m_nonzero_pivots; ++i)
        result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
      return result;
    }

    /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline Index dimensionOfKernel() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return cols() - rank();
    }

    /** \returns true if the matrix of which *this is the LU decomposition represents an injective
      *          linear map, i.e. has trivial kernel; false otherwise.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isInjective() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return rank() == cols();
    }

    /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
      *          linear map; false otherwise.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isSurjective() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return rank() == rows();
    }

    /** \returns true if the matrix of which *this is the LU decomposition is invertible.
      *
      * \note This method has to determine which pivots should be considered nonzero.
      *       For that, it uses the threshold value that you can control by calling
      *       setThreshold(const RealScalar&).
      */
    inline bool isInvertible() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      return isInjective() && (m_lu.rows() == m_lu.cols());
    }

    /** \returns the inverse of the matrix of which *this is the LU decomposition.
      *
      * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
      *       Use isInvertible() to first determine whether this matrix is invertible.
      *
      * \sa MatrixBase::inverse()
      */
    inline const Inverse<FullPivLU> inverse() const
    {
      eigen_assert(m_isInitialized && "LU is not initialized.");
      eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
      return Inverse<FullPivLU>(*this);
    }

    MatrixType reconstructedMatrix() const;

    inline Index rows() const { return m_lu.rows(); }
    inline Index cols() const { return m_lu.cols(); }
    
    #ifndef EIGEN_PARSED_BY_DOXYGEN
    template<typename RhsType, typename DstType>
    EIGEN_DEVICE_FUNC
    void _solve_impl(const RhsType &rhs, DstType &dst) const;
    #endif

  protected:
    MatrixType m_lu;
    PermutationPType m_p;
    PermutationQType m_q;
    IntColVectorType m_rowsTranspositions;
    IntRowVectorType m_colsTranspositions;
    Index m_det_pq, m_nonzero_pivots;
    RealScalar m_maxpivot, m_prescribedThreshold;
    bool m_isInitialized, m_usePrescribedThreshold;
};

template<typename MatrixType>
FullPivLU<MatrixType>::FullPivLU()
  : m_isInitialized(false), m_usePrescribedThreshold(false)
{
}

template<typename MatrixType>
FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
  : m_lu(rows, cols),
    m_p(rows),
    m_q(cols),
    m_rowsTranspositions(rows),
    m_colsTranspositions(cols),
    m_isInitialized(false),
    m_usePrescribedThreshold(false)
{
}

template<typename MatrixType>
FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
  : m_lu(matrix.rows(), matrix.cols()),
    m_p(matrix.rows()),
    m_q(matrix.cols()),
    m_rowsTranspositions(matrix.rows()),
    m_colsTranspositions(matrix.cols()),
    m_isInitialized(false),
    m_usePrescribedThreshold(false)
{
  compute(matrix);
}

template<typename MatrixType>
FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
{
  // the permutations are stored as int indices, so just to be sure:
  eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
  
  m_isInitialized = true;
  m_lu = matrix;

  const Index size = matrix.diagonalSize();
  const Index rows = matrix.rows();
  const Index cols = matrix.cols();

  // will store the transpositions, before we accumulate them at the end.
  // can't accumulate on-the-fly because that will be done in reverse order for the rows.
  m_rowsTranspositions.resize(matrix.rows());
  m_colsTranspositions.resize(matrix.cols());
  Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i

  m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
  m_maxpivot = RealScalar(0);

  for(Index k = 0; k < size; ++k)
  {
    // First, we need to find the pivot.

    // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
    Index row_of_biggest_in_corner, col_of_biggest_in_corner;
    RealScalar biggest_in_corner;
    biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
                        .cwiseAbs()
                        .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
    row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
    col_of_biggest_in_corner += k; // need to add k to them.

    if(biggest_in_corner==RealScalar(0))
    {
      // before exiting, make sure to initialize the still uninitialized transpositions
      // in a sane state without destroying what we already have.
      m_nonzero_pivots = k;
      for(Index i = k; i < size; ++i)
      {
        m_rowsTranspositions.coeffRef(i) = i;
        m_colsTranspositions.coeffRef(i) = i;
      }
      break;
    }

    if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;

    // Now that we've found the pivot, we need to apply the row/col swaps to
    // bring it to the location (k,k).

    m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
    m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
    if(k != row_of_biggest_in_corner) {
      m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
      ++number_of_transpositions;
    }
    if(k != col_of_biggest_in_corner) {
      m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
      ++number_of_transpositions;
    }

    // Now that the pivot is at the right location, we update the remaining
    // bottom-right corner by Gaussian elimination.

    if(k<rows-1)
      m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
    if(k<size-1)
      m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
  }

  // the main loop is over, we still have to accumulate the transpositions to find the
  // permutations P and Q

  m_p.setIdentity(rows);
  for(Index k = size-1; k >= 0; --k)
    m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));

  m_q.setIdentity(cols);
  for(Index k = 0; k < size; ++k)
    m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));

  m_det_pq = (number_of_transpositions%2) ? -1 : 1;
  return *this;
}

template<typename MatrixType>
typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
{
  eigen_assert(m_isInitialized && "LU is not initialized.");
  eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
  return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
 * This function is provided for debug purposes. */
template<typename MatrixType>
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LU is not initialized.");
  const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
  // LU
  MatrixType res(m_lu.rows(),m_lu.cols());
  // FIXME the .toDenseMatrix() should not be needed...
  res = m_lu.leftCols(smalldim)
            .template triangularView<UnitLower>().toDenseMatrix()
      * m_lu.topRows(smalldim)
            .template triangularView<Upper>().toDenseMatrix();

  // P^{-1}(LU)
  res = m_p.inverse() * res;

  // (P^{-1}LU)Q^{-1}
  res = res * m_q.inverse();

  return res;
}

/********* Implementation of kernel() **************************************************/

namespace internal {
template<typename _MatrixType>
struct kernel_retval<FullPivLU<_MatrixType> >
  : kernel_retval_base<FullPivLU<_MatrixType> >
{
  EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)

  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
            MatrixType::MaxColsAtCompileTime,
            MatrixType::MaxRowsAtCompileTime)
  };

  template<typename Dest> void evalTo(Dest& dst) const
  {
    using std::abs;
    const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
    if(dimker == 0)
    {
      // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
      // avoid crashing/asserting as that depends on floating point calculations. Let's
      // just return a single column vector filled with zeros.
      dst.setZero();
      return;
    }

    /* Let us use the following lemma:
      *
      * Lemma: If the matrix A has the LU decomposition PAQ = LU,
      * then Ker A = Q(Ker U).
      *
      * Proof: trivial: just keep in mind that P, Q, L are invertible.
      */

    /* Thus, all we need to do is to compute Ker U, and then apply Q.
      *
      * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
      * Thus, the diagonal of U ends with exactly
      * dimKer zero's. Let us use that to construct dimKer linearly
      * independent vectors in Ker U.
      */

    Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
    RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
    Index p = 0;
    for(Index i = 0; i < dec().nonzeroPivots(); ++i)
      if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
        pivots.coeffRef(p++) = i;
    eigen_internal_assert(p == rank());

    // we construct a temporaty trapezoid matrix m, by taking the U matrix and
    // permuting the rows and cols to bring the nonnegligible pivots to the top of
    // the main diagonal. We need that to be able to apply our triangular solvers.
    // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
    Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
           MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
      m(dec().matrixLU().block(0, 0, rank(), cols));
    for(Index i = 0; i < rank(); ++i)
    {
      if(i) m.row(i).head(i).setZero();
      m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
    }
    m.block(0, 0, rank(), rank());
    m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
    for(Index i = 0; i < rank(); ++i)
      m.col(i).swap(m.col(pivots.coeff(i)));

    // ok, we have our trapezoid matrix, we can apply the triangular solver.
    // notice that the math behind this suggests that we should apply this to the
    // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
    m.topLeftCorner(rank(), rank())
     .template triangularView<Upper>().solveInPlace(
        m.topRightCorner(rank(), dimker)
      );

    // now we must undo the column permutation that we had applied!
    for(Index i = rank()-1; i >= 0; --i)
      m.col(i).swap(m.col(pivots.coeff(i)));

    // see the negative sign in the next line, that's what we were talking about above.
    for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
    for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
    for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
  }
};

/***** Implementation of image() *****************************************************/

template<typename _MatrixType>
struct image_retval<FullPivLU<_MatrixType> >
  : image_retval_base<FullPivLU<_MatrixType> >
{
  EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)

  enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
            MatrixType::MaxColsAtCompileTime,
            MatrixType::MaxRowsAtCompileTime)
  };

  template<typename Dest> void evalTo(Dest& dst) const
  {
    using std::abs;
    if(rank() == 0)
    {
      // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
      // avoid crashing/asserting as that depends on floating point calculations. Let's
      // just return a single column vector filled with zeros.
      dst.setZero();
      return;
    }

    Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
    RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
    Index p = 0;
    for(Index i = 0; i < dec().nonzeroPivots(); ++i)
      if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
        pivots.coeffRef(p++) = i;
    eigen_internal_assert(p == rank());

    for(Index i = 0; i < rank(); ++i)
      dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
  }
};

/***** Implementation of solve() *****************************************************/

} // end namespace internal

#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename _MatrixType>
template<typename RhsType, typename DstType>
void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
{  
  /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
  * So we proceed as follows:
  * Step 1: compute c = P * rhs.
  * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
  * Step 3: replace c by the solution x to Ux = c. May or may not exist.
  * Step 4: result = Q * c;
  */

  const Index rows = this->rows(),
              cols = this->cols(),
              nonzero_pivots = this->nonzeroPivots();
  eigen_assert(rhs.rows() == rows);
  const Index smalldim = (std::min)(rows, cols);

  if(nonzero_pivots == 0)
  {
    dst.setZero();
    return;
  }

  typename RhsType::PlainObject c(rhs.rows(), rhs.cols());

  // Step 1
  c = permutationP() * rhs;

  // Step 2
  m_lu.topLeftCorner(smalldim,smalldim)
      .template triangularView<UnitLower>()
      .solveInPlace(c.topRows(smalldim));
  if(rows>cols)
    c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);

  // Step 3
  m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
      .template triangularView<Upper>()
      .solveInPlace(c.topRows(nonzero_pivots));

  // Step 4
  for(Index i = 0; i < nonzero_pivots; ++i)
    dst.row(permutationQ().indices().coeff(i)) = c.row(i);
  for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
    dst.row(permutationQ().indices().coeff(i)).setZero();
}
#endif

namespace internal {


/***** Implementation of inverse() *****************************************************/
template<typename DstXprType, typename MatrixType, typename Scalar>
struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<Scalar>, Dense2Dense, Scalar>
{
  typedef FullPivLU<MatrixType> LuType;
  typedef Inverse<LuType> SrcXprType;
  static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar> &)
  {    
    dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
  }
};
} // end namespace internal

/******* MatrixBase methods *****************************************************************/

/** \lu_module
  *
  * \return the full-pivoting LU decomposition of \c *this.
  *
  * \sa class FullPivLU
  */
#ifndef __CUDACC__
template<typename Derived>
inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::fullPivLu() const
{
  return FullPivLU<PlainObject>(eval());
}
#endif

} // end namespace Eigen

#endif // EIGEN_LU_H