1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
|
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INCOMPLETE_LUT_H
#define EIGEN_INCOMPLETE_LUT_H
namespace Eigen {
namespace internal {
/** \internal
* Compute a quick-sort split of a vector
* On output, the vector row is permuted such that its elements satisfy
* abs(row(i)) >= abs(row(ncut)) if i<ncut
* abs(row(i)) <= abs(row(ncut)) if i>ncut
* \param row The vector of values
* \param ind The array of index for the elements in @p row
* \param ncut The number of largest elements to keep
**/
template <typename VectorV, typename VectorI, typename Index>
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
{
typedef typename VectorV::RealScalar RealScalar;
using std::swap;
using std::abs;
Index mid;
Index n = row.size(); /* length of the vector */
Index first, last ;
ncut--; /* to fit the zero-based indices */
first = 0;
last = n-1;
if (ncut < first || ncut > last ) return 0;
do {
mid = first;
RealScalar abskey = abs(row(mid));
for (Index j = first + 1; j <= last; j++) {
if ( abs(row(j)) > abskey) {
++mid;
swap(row(mid), row(j));
swap(ind(mid), ind(j));
}
}
/* Interchange for the pivot element */
swap(row(mid), row(first));
swap(ind(mid), ind(first));
if (mid > ncut) last = mid - 1;
else if (mid < ncut ) first = mid + 1;
} while (mid != ncut );
return 0; /* mid is equal to ncut */
}
}// end namespace internal
/** \ingroup IterativeLinearSolvers_Module
* \class IncompleteLUT
* \brief Incomplete LU factorization with dual-threshold strategy
*
* During the numerical factorization, two dropping rules are used :
* 1) any element whose magnitude is less than some tolerance is dropped.
* This tolerance is obtained by multiplying the input tolerance @p droptol
* by the average magnitude of all the original elements in the current row.
* 2) After the elimination of the row, only the @p fill largest elements in
* the L part and the @p fill largest elements in the U part are kept
* (in addition to the diagonal element ). Note that @p fill is computed from
* the input parameter @p fillfactor which is used the ratio to control the fill_in
* relatively to the initial number of nonzero elements.
*
* The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
* and when @p fill=n/2 with @p droptol being different to zero.
*
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
* Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
*
* NOTE : The following implementation is derived from the ILUT implementation
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
* released under the terms of the GNU LGPL:
* http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
* However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
* See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
* http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
* alternatively, on GMANE:
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
*/
template <typename _Scalar>
class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar> >
{
protected:
typedef SparseSolverBase<IncompleteLUT<_Scalar> > Base;
using Base::m_isInitialized;
public:
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Dynamic,1> Vector;
typedef SparseMatrix<Scalar,RowMajor> FactorType;
typedef SparseMatrix<Scalar,ColMajor> PermutType;
typedef typename FactorType::Index Index;
public:
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
IncompleteLUT()
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
m_analysisIsOk(false), m_factorizationIsOk(false)
{}
template<typename MatrixType>
IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
: m_droptol(droptol),m_fillfactor(fillfactor),
m_analysisIsOk(false),m_factorizationIsOk(false)
{
eigen_assert(fillfactor != 0);
compute(mat);
}
Index rows() const { return m_lu.rows(); }
Index cols() const { return m_lu.cols(); }
/** \brief Reports whether previous computation was successful.
*
* \returns \c Success if computation was succesful,
* \c NumericalIssue if the matrix.appears to be negative.
*/
ComputationInfo info() const
{
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
return m_info;
}
template<typename MatrixType>
void analyzePattern(const MatrixType& amat);
template<typename MatrixType>
void factorize(const MatrixType& amat);
/**
* Compute an incomplete LU factorization with dual threshold on the matrix mat
* No pivoting is done in this version
*
**/
template<typename MatrixType>
IncompleteLUT<Scalar>& compute(const MatrixType& amat)
{
analyzePattern(amat);
factorize(amat);
m_isInitialized = m_factorizationIsOk;
return *this;
}
void setDroptol(const RealScalar& droptol);
void setFillfactor(int fillfactor);
template<typename Rhs, typename Dest>
void _solve_impl(const Rhs& b, Dest& x) const
{
x = m_Pinv * b;
x = m_lu.template triangularView<UnitLower>().solve(x);
x = m_lu.template triangularView<Upper>().solve(x);
x = m_P * x;
}
protected:
/** keeps off-diagonal entries; drops diagonal entries */
struct keep_diag {
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
{
return row!=col;
}
};
protected:
FactorType m_lu;
RealScalar m_droptol;
int m_fillfactor;
bool m_analysisIsOk;
bool m_factorizationIsOk;
ComputationInfo m_info;
PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
};
/**
* Set control parameter droptol
* \param droptol Drop any element whose magnitude is less than this tolerance
**/
template<typename Scalar>
void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
{
this->m_droptol = droptol;
}
/**
* Set control parameter fillfactor
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
**/
template<typename Scalar>
void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
{
this->m_fillfactor = fillfactor;
}
template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
{
// Compute the Fill-reducing permutation
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
// Symmetrize the pattern
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
AtA.prune(keep_diag());
internal::minimum_degree_ordering<Scalar, Index>(AtA, m_P); // Then compute the AMD ordering...
m_Pinv = m_P.inverse(); // ... and the inverse permutation
m_analysisIsOk = true;
}
template <typename Scalar>
template<typename _MatrixType>
void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
{
using std::sqrt;
using std::swap;
using std::abs;
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
Index n = amat.cols(); // Size of the matrix
m_lu.resize(n,n);
// Declare Working vectors and variables
Vector u(n) ; // real values of the row -- maximum size is n --
VectorXi ju(n); // column position of the values in u -- maximum size is n
VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
// Apply the fill-reducing permutation
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
SparseMatrix<Scalar,RowMajor, Index> mat;
mat = amat.twistedBy(m_Pinv);
// Initialization
jr.fill(-1);
ju.fill(0);
u.fill(0);
// number of largest elements to keep in each row:
Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
if (fill_in > n) fill_in = n;
// number of largest nonzero elements to keep in the L and the U part of the current row:
Index nnzL = fill_in/2;
Index nnzU = nnzL;
m_lu.reserve(n * (nnzL + nnzU + 1));
// global loop over the rows of the sparse matrix
for (Index ii = 0; ii < n; ii++)
{
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
Index sizeu = 1; // number of nonzero elements in the upper part of the current row
Index sizel = 0; // number of nonzero elements in the lower part of the current row
ju(ii) = ii;
u(ii) = 0;
jr(ii) = ii;
RealScalar rownorm = 0;
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
for (; j_it; ++j_it)
{
Index k = j_it.index();
if (k < ii)
{
// copy the lower part
ju(sizel) = k;
u(sizel) = j_it.value();
jr(k) = sizel;
++sizel;
}
else if (k == ii)
{
u(ii) = j_it.value();
}
else
{
// copy the upper part
Index jpos = ii + sizeu;
ju(jpos) = k;
u(jpos) = j_it.value();
jr(k) = jpos;
++sizeu;
}
rownorm += numext::abs2(j_it.value());
}
// 2 - detect possible zero row
if(rownorm==0)
{
m_info = NumericalIssue;
return;
}
// Take the 2-norm of the current row as a relative tolerance
rownorm = sqrt(rownorm);
// 3 - eliminate the previous nonzero rows
Index jj = 0;
Index len = 0;
while (jj < sizel)
{
// In order to eliminate in the correct order,
// we must select first the smallest column index among ju(jj:sizel)
Index k;
Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
k += jj;
if (minrow != ju(jj))
{
// swap the two locations
Index j = ju(jj);
swap(ju(jj), ju(k));
jr(minrow) = jj; jr(j) = k;
swap(u(jj), u(k));
}
// Reset this location
jr(minrow) = -1;
// Start elimination
typename FactorType::InnerIterator ki_it(m_lu, minrow);
while (ki_it && ki_it.index() < minrow) ++ki_it;
eigen_internal_assert(ki_it && ki_it.col()==minrow);
Scalar fact = u(jj) / ki_it.value();
// drop too small elements
if(abs(fact) <= m_droptol)
{
jj++;
continue;
}
// linear combination of the current row ii and the row minrow
++ki_it;
for (; ki_it; ++ki_it)
{
Scalar prod = fact * ki_it.value();
Index j = ki_it.index();
Index jpos = jr(j);
if (jpos == -1) // fill-in element
{
Index newpos;
if (j >= ii) // dealing with the upper part
{
newpos = ii + sizeu;
sizeu++;
eigen_internal_assert(sizeu<=n);
}
else // dealing with the lower part
{
newpos = sizel;
sizel++;
eigen_internal_assert(sizel<=ii);
}
ju(newpos) = j;
u(newpos) = -prod;
jr(j) = newpos;
}
else
u(jpos) -= prod;
}
// store the pivot element
u(len) = fact;
ju(len) = minrow;
++len;
jj++;
} // end of the elimination on the row ii
// reset the upper part of the pointer jr to zero
for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
// 4 - partially sort and insert the elements in the m_lu matrix
// sort the L-part of the row
sizel = len;
len = (std::min)(sizel, nnzL);
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
internal::QuickSplit(ul, jul, len);
// store the largest m_fill elements of the L part
m_lu.startVec(ii);
for(Index k = 0; k < len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
// store the diagonal element
// apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
if (u(ii) == Scalar(0))
u(ii) = sqrt(m_droptol) * rownorm;
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
// sort the U-part of the row
// apply the dropping rule first
len = 0;
for(Index k = 1; k < sizeu; k++)
{
if(abs(u(ii+k)) > m_droptol * rownorm )
{
++len;
u(ii + len) = u(ii + k);
ju(ii + len) = ju(ii + k);
}
}
sizeu = len + 1; // +1 to take into account the diagonal element
len = (std::min)(sizeu, nnzU);
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
internal::QuickSplit(uu, juu, len);
// store the largest elements of the U part
for(Index k = ii + 1; k < ii + len; k++)
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
}
m_lu.finalize();
m_lu.makeCompressed();
m_factorizationIsOk = true;
m_info = Success;
}
} // end namespace Eigen
#endif // EIGEN_INCOMPLETE_LUT_H
|